首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 761 毫秒
1.
In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase “leading learning” to mean the chair's constitution of influence, power, and authority to intentionally impact the conceptual, pedagogical, cultural, and political aspects of teachers’ work. The data for this article are based on our ongoing work with one science department, over the past nine years, and have been woven into a longitudinal narrative study of a chair who has led the learning of an effective department since 2000. In considering the data, we can reach two major conclusions. First, for a chair to lead learning is to build a professional commitment to a vision of science education, not a particular program. Second, in leading learning, chairs afford opportunities for teacher empowerment. This affordance, however, is only half the issue. It is commitment to a vision that drives a desire to take advantage of opportunities as they arise. In leading learning that reflects changes in the broader science education community, learning opportunities are opened beyond the department.  相似文献   

2.
Over the past 5 years, integrated science and mathematics professional development programs for grades 4‐10 science and mathematics teachers have been designed and implemented at Wright State University. The primary goals of the programs were to enhance the science and mathematics content understanding and pedagogical knowledge of the participant teachers in order to increase teacher confidence and promote the implementation of standards‐based teaching practices in precollege classrooms. In this article, the general program structure developed and implemented over the years is discussed. Focusing on the 1999 program, evidence is presented of enhanced participant content understanding and pedagogical preparation, and specific examples of modified teacher practices are discussed.  相似文献   

3.
The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the ‘other subject’ and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.  相似文献   

4.
This article is about an investigation of six middle school science teachers’ beliefs and instructional practice about the coherence of the science they teach as articulated by National Science Education Standards ( NRC, 1996 ). Many well intentioned reform efforts focus on improving content knowledge of teachers, but many classroom teachers regularly miss opportunities to provide conceptual connections within the science ideas building the sense of coherence in science. This investigation involved a quasi experimental study to examine the efficacy of a method for collecting data about middle school science teachers’ thinking about science and to determine if they teach science coherently. The teachers were surveyed, interviewed, provided concept maps about their thinking of the science they taught, and observed to investigate whether their practice reflects their beliefs. An examination of the teachers’ beliefs, stated and unstated curriculum, the connections among topics and the nature of science revealed that one, the observation tool may have merit for identifying the content and connections among science topics, and two, that teachers ‘stated beliefs consistent with the National Science Education Standards’ vision for coherent science, did not match their demonstrated practice. The content taught could be characterized in three ways; coherent content and few connections, coherent content and connections, and not coherent content. This indicates for this group of middle school science teachers that knowing how they think about science and how those beliefs are reflected in their teaching is complex. This study can inform teacher education and professional development efforts about the need to move beyond just content enhancement to examine prior beliefs about the connections of concepts within science.  相似文献   

5.
Preservice elementary school teachers' fragmented understanding of mathematics is widely documented in the research literature. Their understanding of division by 0 is no exception. This article reports on two teacher education tasks and experiences designed to challenge and extend preservice teachers' understanding of division by 0. These tasks asked preservice teachers to investigate division by 0 in the context of responding to students' erroneous mathematical ideas and were respectively structured so that the question was investigated through discussion with peers and through independent investigation. Results revealed that preservice teachers gained new mathematical (what the answer is and why it is so) and pedagogical (how they might explain it to students) insights through both experiences. However, the quality of these insights were related to the participants' disposition to justify their thinking and (or) to investigate mathematics they did not understand. The study's results highlight the value of using teacher learning tasks that situate mathematical inquiry in teaching practice but also highlight the challenge for teacher educators to design experiences that help preservice teachers see the importance of, and develop the tools and inclination for, mathematical inquiry that is needed for teaching mathematics with understanding.  相似文献   

6.
The aim of this study is to report findings from the Drawing‐Elementary‐Science‐Teacher‐Ideal‐Not, or the DESTIN procedure. The study utilizes a simple drawing procedure accompanied by a narrative and discussion for understanding preservice teachers' images of science, science teaching, and the science teacher. Ninety drawings from two sections of an elementary science methods course were analyzed. Looking at the pre‐drawings from the beginning of the semester and post‐drawings done at the end of the semester, the findings relate the value of using drawings in teacher education and the usefulness of this procedure to promote discussions about science teaching, the construction of new images and practices for teaching elementary science, and teacher identity. The DESTIN procedure has potential as a productive activity for teacher education and long‐term professional development by making more explicit teachers' views of science teaching and learning and their past experiences as science learners.  相似文献   

7.
Within research on mathematics teachers and/or their professional development, the concept of identity emerges as a critique of views of how teaching practice is related to teachers’ ‘internal states’ of knowledge and beliefs. Identity relates teachers’ professional lives to teaching practices and to the contexts in which the teaching and/or professional development occurs. However, what might count as the context still needs in-depth discussion. In order to contribute to the development of a theoretical framework for understanding mathematics teachers’ professional lives, we will draw on one remarkable teacher’s identity as a primary mathematics teacher in relation to one political, sociocultural, and pedagogical context. We use this teacher’s experience to discuss how education policies that create what Ball (2003) called ‘terrors of performativity’ tend to impede the formation of a balanced teacher identity.  相似文献   

8.
An important goal of mathematics education reform is to support teacher learning. Toward this end, researchers and teacher educators have investigated ways in which teachers learn about mathematical content, pedagogical strategies, and student thinking as they implement reform. This study extends such work by examining how one elementary school and one high school teacher learned from students' interpretations of new conceptually based representations contained in instructional materials aligned with the Principles and Standards for School Mathematics ( National Council of Teachers of Mathematics, 2000 ). Results indicated that teaching with new representations provided a rich context for teacher learning at both the elementary and high school level, and three dimensions were identified along which such learning occurred. The results suggest that pedagogical content knowledge with respect to representations is an important facet of teacher cognition that should be studied in greater depth.  相似文献   

9.
The study examined relationships among key domains of science instruction with English language learning (ELL) students based on teachers' perceptions of their classroom practices (i.e., what they think they do) and actual classroom practices (i.e., what they are observed doing). The four domains under investigation included: (1) teachers' knowledge of science content; (2) teaching practices to support scientific understanding; (3) teaching practices to support scientific inquiry; and (4) teaching practices to support English language development during science instruction. The study involved 38 third‐grade teachers participating in the first‐year implementation of a professional development intervention aimed at improving science and literacy achievement of ELL students in urban elementary schools. Based on teachers' self‐reports, practices for understanding were related to practices for inquiry and practices for English language development. Based on classroom observations in the fall and spring, practices for understanding were related to practices for inquiry, practices for English language development, and teacher knowledge of science content. However, we found a weak to non‐existent relationship between teachers' self‐reports and observations of their practices.  相似文献   

10.
This study examined prospective elementary education majors' science teaching self‐efficacy while they were enrolled in an introductory geology lab course for elementary education majors. The Science Teaching Efficacy Belief Instrument Form B (STEBI‐B) was administered during the first and last lab class sessions. Additionally, students were asked an open‐ended question to describe their experience in the education majors' geology lab. The results of the STEBI‐B were analyzed using paired t‐tests to determine whether the students changed their personal science teaching efficacy (PSTE) and science teaching outcome expectancy (STOE). Results of this study indicate a significant increase in PSTE. No significant differences were found in STOE. This study suggests that science content courses designed for education majors may lead to a positive change in science teaching self‐efficacy and has implications for teacher educators in preparing science content courses for their teacher preparation program.  相似文献   

11.
The purpose of this study is to gain insight into the experiences that nationally award‐winning, exemplary science teachers have had over their career and examine the alignment of their responses with calls for K‐12 science education reform from a selection of prominent commissioned government reports since 1980. From an assessment of the alignment of exemplary teachers, calls for reform have had a limited effect and highlight the weakness of using national reports as a wide‐scale, nationalized approach to science education reform. Findings are focused on seven different areas of teacher development: classroom issues, teaching scientific inquiry, use of technology, preservice experiences, professional development of in‐service teachers, vertical articulation, and science education reform over time. Among other issues, the teachers indicated one of the biggest barriers to inquiry teaching is the pressure to conform to high‐stakes testing and the lack of examples of inquiry teaching during teacher education experiences.  相似文献   

12.
We describe and analyze a professional development (PD) model that involved a partnership among science, mathematics and education university faculty, science and mathematics coordinators, and middle school administrators, teachers, and students. The overarching project goal involved the implementation of interdisciplinary STEM Design Challenges (DCs). The PD model targeted: (a) increasing teachers’ content and pedagogical content knowledge in mathematics and science; (b) helping teachers integrate STEM practices into their lessons; and (c) addressing teachers’ beliefs about engaging underperforming students in challenging problems. A unique aspect involved low‐achieving students and their teachers learning alongside each other as they co‐participated in STEM design challenges for one week in the summer. Our analysis focused on what teachers came to value about STEM DCs, and the challenges in and affordances for implementing DCs. Two significant areas of value for the teachers were students’ use of scientific, mathematical, and engineering practices and motivation, engagement, and empowerment by all learners. Challenges associated with pedagogy, curriculum, and the traditional structures of the schools were identified. Finally, there were four key affordances: (a) opportunities to construct a vision of STEM education; (b) motivation to implement DCs; (c) ambitious pedagogical tools; and, (d) ongoing support for planning and implementation. This article features a Research to Practice Companion Article . Please click on the supporting information link below to access.  相似文献   

13.
The Indiana Science Initiative (ISI) is a systemic effort to reform K–8 science education. The program provides teachers with professional development, reform‐oriented science modules, and materials support. To examine the impact of the initiative's professional development, a participant observation study was conducted in the program's pilot year. Five teachers in grades 3–6 were observed and interviewed as they implemented the ISI‐provided modules. Analysis of the observation data revealed that the teachers incorporated each of the features of inquiry science instruction. However, they did not consistently teach in a way that was aligned with the intent of the ISI. Examination of interview data provided insight into influences on teachers' use of inquiry with the ISI‐provided modules. These data revealed that teachers were aware of the intent of the ISI and attempted to align their instruction. However, teachers were influenced by their perceptions of students' behavior and abilities as well as timing and the appropriate level of teacher control needed to facilitate science instruction. The research suggests that professional development activities should prepare teachers to help learners evaluate explanations against alternatives, connect explanations to scientific knowledge, and provide strategies to address teachers' perceptions of students, timing, and teacher control.  相似文献   

14.
Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This study examines the effects on eighth grade science teachers and their students in the context of a PD focused on the integration of information communication technologies and reformed science teaching practices. Findings from this investigation suggest that teachers who participated in PD for two years learned more about technology, improved their practice, and their students’ achievement was significantly higher compared to teachers who participated in one year of the PD or non‐participating peers. Science educators face multiple challenges as they attempt to deliver instruction in fundamentally different ways than what they experienced as learners. The delivery of this professional learning suggest that PD for science teachers should include educative learning experiences if understandings of reforms supported by research are to be realized.  相似文献   

15.
The press to integrate mathematics and science comes from researchers, business leaders, and educators, yet research that examines ways to support teachers in relating these disciplines is scant. Using research on science and mathematics professional development, we designed a professional development project to help elementary teachers improve their teaching of mathematics and science by strategically connecting these disciplines. The purposes of this study are: (a) to identify changes in teachers' confidence and practice after participating in the professional development and (b) to identify different ways to connect mathematics and science during the professional development. We use a Likert‐scale survey to assess changes in teachers' confidence related to teaching mathematics and science. In addition, we report on a thematic analysis of teachers' written responses to open‐ended questions that probed teachers' perceived changes in practice. We analyze field notes from observations of project workshops to document different types of opportunities for connecting mathematics and science. We conclude with implications for future professional development that connects mathematics and science in meaningful ways, as well as suggestions for future research.  相似文献   

16.
This paper proposes a taxonomy of the pedagogical opportunities that are offered by mathematics analysis software such as computer algebra systems, graphics calculators, dynamic geometry or statistical packages. Mathematics analysis software is software for purposes such as calculating, drawing graphs and making accurate diagrams. However, its availability in classrooms also provides opportunities for positive changes to teaching and learning. Very many examples are documented in the professional and research literature, and in this paper we organize them into 10 types. These are displayed in the form of a ‘pedagogical map’, which further classifies them according to whether the opportunity arises from new opportunities for the mathematical tasks used, change to interpersonal aspects of the classroom or change to the point of view on mathematics as a subject. The map can be used in teacher professional development to draw attention to possibilities for lessons or as a catalyst for professional discussion. For research on teaching, it can be used to map current practice, or to track professional growth. The intention of the map is to summarise the potential benefits of teaching with technology in a form that may be useful for both teachers and researchers.  相似文献   

17.
This case study describes a professor's evolution from geoscience researcher to effective teacher to education researcher. The article details his initial beliefs about teaching, looks at the factors that prompted him to seek a different teaching approach, and enumerates the supports and challenges that he had on his journey. Factors essential to this evolution are early career success in discipline research, an institutional climate to reward teaching, mentoring support by colleagues, access to professional development opportunities, and involvement in action research activities. The case study is linked to education literature about teaching and education research and makes recommendations based on the findings of the study.  相似文献   

18.
This article situates comic-based representations of teaching in the long history of tensions between theory and practice in teacher education. The article argues that comics can be semiotic resources in learning to teach and suggests how information technologies can support experiences with comics in university mathematics methods courses that (a) help learners see the mathematical work of teaching in lessons they observe, (b) allow candidates to explore tactical decision-making in teaching, and (c) support preservice teachers in rehearsing classroom interactions.  相似文献   

19.
This article presents the findings from a study of a mentoring program for novice mathematics and science teachers, which was provided by their teacher education program. This study reports the findings of interviews with novice math and science teachers, their mentors, and the mentoring program administrators to explore stakeholder perceptions of mentoring support. Findings suggest the importance of using multiple mentoring strategies to develop, support, and retain high‐quality math and science teachers in the teaching profession. This study contributes to what is known about the role that teacher education programs may play in mentoring novice math and science teachers who have graduated from their programs.  相似文献   

20.
Concerns with the ability of U.S. classrooms to develop learners who will become the next generation of innovators, particularly given the present climate of standardized testing, warrants a closer look at creativity in science classrooms. The present study explored these concerns associated with teachers' classroom practice by addressing the following research question: What pedagogical factors, and related teacher conceptions, are potentially related to the demonstration of creativity among science students? Seventeen middle‐level, high school, and introductory‐level college science teachers from a variety of school contexts participated in the study. A questionnaire developed for this study, interviews, and classroom observations were used in order to explore potential areas of relatedness between pedagogical factors and manifestations of student creativity in science. Five categories ultimately emerged and described potential areas in which teachers would have to explicitly plan for creativity. These areas could inform the pedagogical considerations that teachers would have to make within their lesson plans and activities in order to support its manifestation among students. These provide a starting point for science teachers and science teacher educators to consider how to develop supportive environments for student creative thinking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号