首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
The geometrical structure, atomic ordering, electronic and magnetic properties of closed shell Con PdN-n for n=0, 1, ...,N, and N=3, 5, 7 and 13, have been studied. The whole set of values for N and n, as well as most of the isomers were analyzed. The electronic, magnetic, and structural characteristics were calculated within the density functional theory by means of the SIESTA code using the generalized gradient approximation of Perdew-Burke-Ernzerhof for the exchange and correlation potential. The lowest energy geometries obtained were the triangle, hexahedron, decahedron, and icosahedron. We also performed calculations assuming noncollinear magnetic moment arrangements, but the lowest energy configurations correspond to the collinear geometry. Finally we analyze in detail the chemical order between the two components in the cluster and its influence in the magnetic order.  相似文献   

2.
Oscillating chemical reactions are complex systems, involving a large number of chemical species. In oscillating chemical reaction, some species, usually a reaction intermediate, exhibit fluctuation in its concentration. In this report, visible oscillating chemiluminescence produced by the addition of luminol (3-aminophthalhydrazide) to the oscillating system of H2O2=KSCN=CuSO4=TMAOH was investigated using spectrofluorimetry method. The effects of ingredient concentration of the oscillating system and complexing agents like citric acid and cysteine on the behavior of the oscillating system were investigated. Moreover, the influence of nonaqueous solvents such as ethanol and ethylene glycol has been studied.  相似文献   

3.
Polycrystalline samples of Ba4SrRTi3V7O30 (R=Sm and Dy), members of the tungsten-bronze family, were prepared using a high-temperature, solid-state reaction technique and studied their electrical properties (using complex impedance spectroscopy) in a wide range of temperature (31–500°C) and frequency (1 kHz-1 MHz). Preliminary structural (XRD) analyses of these compounds show the formation of single-phase, orthorhombic structures at room temperature. The scanning electron micrographs (SEM) provided information on the quality of the samples and uniform distribution of grains over the entire surface of the samples. Detailed studies of the dielectric properties suggest that they have undergone ferroelectric-paraelectric phase transition well above the room temperatures (i.e., 432 and 355°C for R= Sm and Dy, respectively, at frequency 100 kHz). Measurements of electrical conductivity (ac and dc) as a function of temperature suggest that the compounds have semiconducting properties much above the room temperature, with negative temperature coefficient of resistance (NTCR) behavior. The existence of ferroelectricity in these compounds was confirmed from a polarization study.   相似文献   

4.
Solid solutions of Bi1 ? x A x (Fe1 ? x/2Nb x/2)O3, where A = Ca, Ba, and Pb, are obtained and their crystal structure and magnetic properties are investigated. It is shown that for A = Ca and x ≈ 0.15, the symmetry of the unit cell changes from rhombohedral (space group R3c) to orthorhombic (Pbnm). The transformation leads to the emergence of spontaneous magnetization due to the Dzyaloshinskii-Moriya interaction. Solid solutions with A = Pb remain rhombohedral up to a concentration of x = 0.3. Spontaneous magnetization sharply increases in the compound with x ≈ 1 at low temperatures and is due to the formation of the spin-glass component.  相似文献   

5.
Wilson chains, based on a logarithmic discretization of a continuous spectrum, are widely used to model an electronic (or bosonic) bath for Kondo spins and other quantum impurities within the numerical renormalization group method and other numerical approaches. In this short note we point out that Wilson chains can not serve as thermal reservoirs as their temperature changes by a number of order ΔE when a finite amount of energy ΔE is added. This proves that for a large class of non-equilibrium problems they cannot be used to predict the long-time behavior.  相似文献   

6.
Temperature dependences (77–300 K) of the thermal capacity, diffusion, and conductivity are investigated for the Nd 0.5 Sr 0.5 MnO 3 and Nd 0.55 Sr 0.45 MnO 3 polycrystalline samples. The examined characteristics show anomalous behavior in the magnetic phase transition and transition to the charge-ordered state. It is demonstrated that the main reason for a sharp decrease in the thermal conductivity during Nd 0.5 Sr 0.5 MnO 3 transition into the antiferromagnetic charge-ordered state is a change in the phonon spectrum caused by the lattice compression. A temperature dependence of the free phonon path is calculated for the examined temperature interval based on the thermal diffusion obtained and the literature data on the sound propagation velocity. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 72–75, April, 2007.  相似文献   

7.
8.
Rare-earth-based infinite coordination polymer (RE-ICP) spheres with diameters ranging from 50 nm to 2 μm have been prepared using meso-2,3-dimercaptosuccinic acid (DMSA) as ligand under hydrothermal conditions. RE2O2SO4 microspheres with similar morphology were obtained by calcining the corresponding RE-ICP spheres. However, as for Ce-ICP and Sc-ICP, CeO2 and Sc2O3 were obtained. The products were characterized using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy, laser Raman spectrometry, and energy-dispersive X-ray spectrum. Elemental analysis and inductive coupled plasma atomic emission spectrometer were adopted to study the composition of the Eu-ICP. To explore their potential applications, several samples of the products were selected and their properties were investigated. The Eu-ICP and Eu2O2SO4 microspheres give strong red emissions when excited with a 394-nm ultraviolet light. Furthermore, the Eu-ICP displays a high selectivity for Fe(III). The obtained CeO2 has a strong absorption in the UV region and the Gd2O2SO4 microspheres show paramagnetic behavior.
Graphical abstract A series of RE2O2SO4 microspheres were prepared using a coordination polymer precursor method.
  相似文献   

9.
Nanocrystalline samples of the manganites La0.9Ag0.1MnO3, La0.7Ag0.3MnO3, and La0.7Sr0.3MnO3 were synthesized through pyrolysis and isothermally annealed. The atomic, subatomic, and magnetic structures of these manganites were studied using magnetic, x-ray, and neutron diffraction measurements. Increasing the annealing temperature from 600 to 1200°C coarsens the grains from 30–40 to 600–700 nm in size. All the samples studied have rhombohedral structure and are ferromagnets. The Curie temperature decreases for the samples doped by silver and increases for the samples doped by strontium as the anneal temperature is increased. The magnetization of the Mn ions increases with nanoparticle size in all the three systems, which indicates the presence of a size effect.  相似文献   

10.
Several M3TeO6 (M = Mn, Co, Ni, Cu) oxides order antiferromagnetically at low temperatures (?60 K), while displaying interesting dielectric properties at high temperatures (ferroelectricity below 1000 K in M = Ni case). We have investigated and analyzed the structural and magnetic properties of Mn-doped Co3TeO6 and Ni3TeO6, which order antiferromagnetically at temperatures higher than their undoped counterparts.  相似文献   

11.
A solution combustion route for the synthesis of Eu3+-activated M2V2O7 (M = Sr, Ba) and their luminescent properties have been investigated. Structure and luminescent characteristics of Sr2V2O7:Eu3+ and Ba2V2O7:Eu3+ nanophosphors have been studied by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, fluorescence spectrometry and Fourier transform infra-red spectroscopy. The incorporation of Eu3+ activator in these nanoparticles has been checked by luminescence characteristics. These nanoparticles have displayed red color under a UV source which is due to characteristics transition of Eu3+ from 5D07F2 at 613 nm in both Sr2V2O7:Eu3+ and Ba2V2O7:Eu3+ nanophosphors. In addition, the optimal Eu3+ - doped contents of Sr2(1-x)Eu2xV2O7 and Ba2(1-x)Eu2xV2O7 nanophosphors for both were 4 mol%.  相似文献   

12.
A series of new heterofullerides with compositions Rb2MC60, K2MC60, and KM2C60 (M = Mg, Be) have been synthesized. Measurements of the temperature dependences of the magnetic susceptibility in the temperature interval from 4.2 to 300 K reveal a superconducting transition in heterofullerides K2MgC60, KMg2C60, K2BeC60, and Rb2BeC60 at temperatures T c = 13–22 K. The electron states with uncompensated spin are studied by the electron paramagnetic resonance technique. The contributions of conduction electrons and localized electrons to the paramagnetic susceptibility are extracted.  相似文献   

13.
The results of nonempirical calculation of energies of three polytypes (cubic, two-layer hexagonal, and six-layer hexagonal) are given for RbMnX3 (X = F, Cl, Br) crystals. The calculation is performed using an ionic crystal model with regard for the deformability and the dipole and quadrupole polarizabilities of ions. The behavior of these crystals under the action of hydrostatic pressure is studied. It is demonstrated that, at normal pressure, the RbMnCl3 and RbMnBr3 crystals have a six-layer hexagonal structure. At pressures above 11 kbar, RbMnCl3 passes to a phase with a cubic structure; RbMnBr3 at pressures above 90 kbar passes to a phase with a two-layer hexagonal structure. The RbMnF3 crystal under normal conditions has a cubic structure and experiences no phase transformations under the effect of pressure. The obtained results are in satisfactory agreement with the known experimental data.  相似文献   

14.
Thin epitaxial films of Re0.6Ba0.4MnO3 (Re = La, Pr, Nd, Gd) on (001)-oriented single crystal SrTiO3 and ZrO2(Y2O3) substrates have been prepared and studied. All films possess a cubic perovskite structure, except for the film with Re = La, which exhibited a rhombohedral distortion of the perovskite lattice. The results show evidence for the presence of two magnetic phases, ferromagnetic (FM) and antiferromagnetic (AFM), in the films studied: (i) the magnetization isotherm M(H) appears as a superposition of a linear component (characteristic of antiferromagnets) and a small spontaneous magnetization component; (ii) the magnetic moment per formula unit is significantly reduced as compared to the value expected for the complete FM or ferrimagnetic ordering; (iii) there is a difference between magnetizations of the samples cooled with and without an applied magnetic field, which is preserved in the entire range of magnetic fields studied (50 kOe); (iv) the temperature dependence of the magnetization M(T) in strong magnetic fields is close to linear (for the composition with Re = Gd, M(T) is described by a Langevin function for superparamagnets with a cluster moment of 2μB); and (v) the magnetization hysteresis loops of the field-cooled samples are shifted along the field axis. The exchange integral (characterizing the Mn-O-Mn coupling via the FM-AFM phase boundary) estimated from the latter shift is | J|=10?6 eV. This value is two orders of magnitude lower than the negative exchange integral between the FM layers in ReMnO3, which makes the presence of a transition layer at the FM-AFM phase boundary unlikely. The temperature dependences of electrical resistance and magnetoresistance exhibit maxima at the Curie temperature (TC), where the magnetoresistance reaches a colossal value. This behavior indicates that the two-phase magnetic state is caused by a strong s-d exchange.  相似文献   

15.
The electronic structure and the chemical bond in titanium dichalcogenides TiX2 (X = S, Se, Te), which are promising electrode materials for lithium batteries, are studied experimentally and theoretically. It is found that the X-ray photoelectron spectra of the valence bands and the core levels of titanium and its X-ray L 2, 3 absorption spectra demonstrate a change in the ionic and covalent components of the chemical bond in these compounds. The densities of states in these compounds are calculated by the full-potential augmented-plane-wave method, and multiplet calculations of the X-ray L 2, 3 absorption spectra of titanium are performed. It is shown that, in the row TiS2-TiSe2-TiTe2, the covalence increases, the ionicity of the chemical bond decreases, and the effect of the crystal field of a ligand is weakened.  相似文献   

16.
Spinel ferrites can be used in magnetic targeting and microwave heating and can therefore be used for targeted and controllable drug delivery. We used the cetyltrimethylammonium bromide-assisted solvothermal method to synthesize a series of spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) with a mesoporous or hollow-mesoporous structure suitable for direct drug loading and the particle diameters ranging from 200 to 350 nm. We investigated the effects of M2+ cation on the morphology and properties of these products by analyzing their transmission electron microscopy images, mesoporous properties, magnetic properties, and microwave responses. We chose hollow-mesoporous MxFe3-xO4 (M=Fe, Co, Zn) nanoparticles, which had better overall properties, for the drug VP16 (etoposide) loading and microwave-controlled release. The CoxFe3-xO4 and Fe3O4 particles trapped 61.5 and 64.8%, respectively, of the VP16, which were higher than that (60.4%) of ZnxFe3-xO4. Controllable drug release by these simple magnetic nanocarriers can be achieved by microwave irradiation, and VP16-loaded CoxFe3-xO4 released the most VP16 molecules (more than 50% after 1 h and 69.1% after 6 h) under microwave irradiation. Our results confirm the favorable drug loading and microwave-controlled delivery by these ferrites, and lay a theoretical foundation to promote clinical application of the targeted controllable drug delivery system.
Graphical abstract In the present study, we prepared mesoporous or hollow-mesoporous spinel ferrites (MxFe3-xO4, M=Mg, Mn, Fe, Co, Ni, Cu, Zn) by CTAB-assisted solvothermal method and solved the problem of Cu and Ni impurities in CuxFe3-xO4 and NixFe3-xO4 products by means of magnetic separation and additional redox reactions, respectively. We investigated the effects of the M2+ cation on the morphology, mesoporous properties, magnetic properties, and microwave responses of these ferrites. Then, the drug loading and microwave-controlled drug release of hollow-mesoporous MxFe3-xO4 (M?=?Fe, Co, Zn) nanoparticles with better overall properties were also studied. CoxFe3-xO4 has the best overall performances for microwave-controlled drug release.
  相似文献   

17.
The properties of filled skutterudites MFe4Sb12 (M = La, Ca, Na) have been analyzed using the nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) methods. Two lines have been observed on the 139La NMR spectrum of the LaFe4Sb12 compound and a substructure has been revealed in the 121Sb and 123Sb lines in the NQR spectra of LaFe4Sb12 and CaFe4Sb12. The concept of the partial static displacement of guest atoms (M) in LaFe4Sb12 and CaFe4Sb12 has been proposed. The ab initio calculations confirm this assumption as well as give the displacement of a guest atom and indicate the absence of the splitting of the 139La NMR line in the LaFe4Sb12 spectrum.  相似文献   

18.
We study the effect of a magnetic impurity with spin-half on a single propagating electron in a one-dimensional model system via the tight-binding approach. Due to the spin-dependent interaction, the scattering channel for the flying qubit is split, and its transmission spectrum is obtained. It is found that, the spin orientation of the impurity plays the role as a spin state filter for a flying qubit.  相似文献   

19.
The crystal and magnetic structures of Dy1-xCaxBaCo2O5.5 for x = 0.0 and 0.1 have been studied by neutron powder diffraction and the crystal structures of both compounds were found to be best described in space group Pmmm with a ap × 2ap × 2ap unit cells where ap is the lattice parameter of the cubic perovskite unit cell. The a- and b-axes were found to decrease and increase abruptly between 315 and 350 K as the temperature increases and the unit cell volumes exhibit signs of excess thermal expansion in the temperature range from 260 to 315 K. Dy0.9Ca0.1BaCo2O5.5 orders antiferromagnetically for T ≤ 305 K into a G-type magnetic structure with a 2ap × 2ap × 2ap magnetic unit cell. DyBaCo2O5.5 exhibits two magnetically ordered phases and a G-type magnetic structure was observed at the investigated temperatures 260 and 290 K. A 2ap × 2ap × 4ap magnetic unit cell was needed for indexing of the magnetic reflections observed for T ≤ 230 K. The low temperature magnetic structure of DyBaCo2O5.5 is different from the observed magnetic structures of TbBaCo2O5.5 and HoBaCo2O5.5 despite the proximity of Tb, Dy and Ho in the periodic table. It is a relatively complex antiferromagnetic structure with both pyramidally and octahedrally coordinated Co ions in the intermediate spin state. It contains both ferro- and antiferromagnetic interactions and the magnetic moments are canted in the a, b-plane. The canting angles between the magnetic moments and the b-axis are 6.6 and 50.0° at 20 K for the pyramidally and octahedrally coordinated Co ions, respectively. The high and low temperature magnetic phases were found to coexist at 230 K.  相似文献   

20.
Audrey Tan  M.V. Reddy  S. Adams 《Ionics》2017,23(10):2589-2602
We report the synthesis of MCo2O4 (M=Co, Ni) on Ni-mesh by a simple metal acetate decomposition method. Stability tests of the samples in aqueous acidified LiCl, LiOH and LiTFSI in H2O/DME showed that Co3O4/Ni and Co3O4-PVP/Ni are relatively stable in alkaline and neutral environments, with Co3O4/Ni being relatively more stable. For NiCo2O4/Ni and NiCo2O4-PVP/Ni, the low weight percentage change of cobalt in LiTFSI in H2O/DME suggests that they are mostly stable in this electrolyte. The electrochemical performance of the Li-air cell was evaluated using Li anode and a LAGP ceramic separator with above mentioned electrolytes. Co3O4 showed slightly higher catalytic activity for oxygen reduction reaction (ORR) than for oxygen evolution reaction (OER) for the first three cycles. The cell with LiTFSI in H2O/DME as aqueous catholyte showed that NiCo2O4 is a better catalyst for the OER than for the ORR, while the reverse was observed when LiOH was used as the electrolyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号