共查询到20条相似文献,搜索用时 62 毫秒
1.
基于自组织映射网络的流量分类算法 总被引:2,自引:0,他引:2
网络流量分类在QoS、流量控制及网络安全等领域发挥了重要作用. 有监督型的机器学习方法对新流量的识别往往依赖于先前的人工分析;自组织映射网络算法模拟生物神经元,通过自组织行为对数据进行分类学习;实验表明,该无监督型算法能够对新流量进行自动识别,提高了流量识别的准确率. 相似文献
2.
基于自组织特征映射神经网络的短期负荷预测 总被引:5,自引:0,他引:5
提出了一种基于自组织特征映射神经网络(Kohmonen网络)的短期负荷预测方法,根据Kohonen网络的聚类特性,样本在输入时就已分好类。输入既有与负荷曲线平滑性有关的数据又有反映负荷周期性变化的数据。在学习训练时,区别于普通的无监督竞争学习采用有监督竞争学习方式,缩短了学习时间,提高了学习精度。实例分析征明了该方法的有效性。 相似文献
3.
4.
在校园网系统的管理中,网管人员常常需要了解用户的网络行为,以便更好地配置和管理网络系统,提高网络服务效率.以大理学院校园网认证计费系统日志为研究对象,利用自组织映射神经网络(SOM)对校园网用户行为和网络通信模式进行聚类分析.网管人员可以根据聚类结果,设计有效的网络管理方案和系统配置参数,从而有效地配置和管理校园网,提高服务效率和管理质量. 相似文献
5.
自组织特征映射神经网络的区域经济发展聚类分析 总被引:1,自引:0,他引:1
自组织特征映射(SOM)神经网络是无教师自组织、自学习网络,具有优良的数据聚类功能.基于选取的区域经济发展评价指标,对2006年我国31个省(地区)的综合经济实力进行聚类分析.结合主成分得分对聚类结果综合评价,实证效果较好. 相似文献
6.
数据挖掘算法对于支持度改变及数据集更新的适应性一直都是一个难点.本文根据数据集逐步增加的增量式方法,映射事务模式于线性空间中进行挖掘,并借助了图像在操作系统中显示及存储的特点,提出了一种新的增量式数据挖掘算法IPM-DM.同时,对比分析了其中两种模式映射方法,并与同类算法比较,经过实验证明,算法IPM-DM是有效且可行的. 相似文献
7.
一种新的自组织神经网络算法 总被引:1,自引:0,他引:1
黎洪松 《北京师范大学学报(自然科学版)》2005,41(5):496-498
为有效提高矢量量化码书的性能和学习效率,需进一步改进自组织神经网络的学习算法.在分析Kohonen自组织特征映射算法(SOM)的基础上,提出了一种基于频率敏感的自组织特征映射算法(FSOM),并应用到图像矢量量化中,实验表明,FSOM算法具有聚类特性好和训练速度快等优点,是一种有效的码书设计算法. 相似文献
8.
针对自组织映射(Self-Organizing Map,SOM)算法在进行流形学习时容易陷入局部极值和产生"拓扑缺陷"问题的原因,提出了一种新的基于SOM的流形学习算法:TO-SOM(Training Orderly-SOM).根据流形的局部欧氏性,TO-SOM算法从一个局部线性或近似线性的数据子集出发,按照数据的内在流形结构对其进行有序训练,可以避免局部极值、克服"拓扑缺陷".根据SOM算法的鲁棒性,TO-SOM算法在成功学习数据内在流形结构的同时,对邻域大小参数和噪声也不像ISOMAP和LLE等现有流形学习算法那样敏感,从而更容易得到实际应用. 相似文献
9.
用自组织映射神经网络作为粘连字符分割的方法,对经典的自组织学习规则做了一些改进,使其以较少的神经元结点、较快的速度逼近粘连字符的白像素点的分布。 相似文献
10.
为了有效地提高矢量量化(VQ)码书的性能,提出了一种新的自学习特征映射(SLM)算法,并应用到图像VQ中,实验表明,与自组织特征映射(SOM)算法相比,SLM算法具有聚类特性好和峰峰信噪比高等优点,是一种非常有前途的码书设计算法. 相似文献
11.
基于深度神经网络和概率矩阵分解的混合推荐算法 总被引:1,自引:0,他引:1
针对个性化推荐中用户和项目描述信息未充分利用,用户评分矩阵数据集极端稀疏的情况,提出了基于深度神经网络和概率矩阵分解(PMF)的混合推荐算法.首先,对用户和项目描述信息进行预处理,形成包含用户偏好特征的用户和项目特征集,再将各特征输入深度神经网络模型中进行训练.同时,利用概率矩阵分解模型,根据用户评分矩阵通过最大后验估计优化得到潜在特征向量;然后,通过对概率矩阵分解模型的用户和项目潜在特征向量以及深度神经网络模型的真实特征向量进行迭代更新,收敛得到融合用户和项目真实信息的潜在特征向量;最后,利用该特征向量对用户进行个性化推荐.实验证明,本文算法较经典推荐算法以及前人算法在均方误差与平均绝对误差指标上均有改善,说明本文算法的有效性. 相似文献
12.
为了实现在有限时间区间上可重复运行的离散时变非线性系统辨识,给出基于时变神经网络的迭代学习辨识算法.对于每一个固定时刻,以该时刻的神经网络逼近该时刻系统输入输出间的映射关系,提出了在同一时刻沿迭代轴训练网络权值的带死区迭代学习最小二乘算法,为防止收敛速度下降过快,进一步提出了协方差阵可重调的改进算法.所提算法有较快的收敛速度,且时变神经网络对非线性时变系统的辨识精度也较高. 相似文献
13.
基于遗传算法的人工神经网络学习算法 总被引:27,自引:0,他引:27
李建珍 《西北师范大学学报(自然科学版)》2002,38(2):33-37
为了克服和改进BP算法的不足,提出了一种基于遗传算法的神经网络学习算法,仿真结果表明,该算法具有无比的优越性,可避免BP算法易于陷入局部极小值,训练速度慢、误差函数必须可导、受网络结构的限制等缺陷。 相似文献
14.
从影响薄板冲压成形结果因素和有限元网格法出发,研究了基于神经网络预测毛坯尺寸模型的方法.选取模具参数和工艺参数等作为影响冲压成形结果的因素,用正交表和随机法产生径向基函数神经网络的学习样本;利用自组织神经网络对样本进行分类,用有限元网格法反算的毛坯的长度作为神经网络的输出;设计了神经网络流程,定义了神经网络输出与有限元分析数据的相对误差.通过仿真试验证明,提出的预测毛坯尺寸模型的方法是有效的. 相似文献
15.
一种基于GMDH模型的神经网络学习算法 总被引:1,自引:0,他引:1
从简要归纳与分析现有的神经网络模型的角度出发,讨论了GMDH网络模型的结构、特点及其输入输出关系.提出了一种基于GMDH模型的神经网络学习算法,详细阐述了该算法的主要设计思想与实现过程,并就算法停止准则和网络最佳层数问题进行了仿真研究.实践表明,该算法自组织性强,表现出了较好的泛化能力和稳定性. 相似文献
16.
基于粒子群优化和SOM网络的聚类算法研究 总被引:2,自引:0,他引:2
利用改进的粒子群优化算法(PSO)的优化性能,结合SOM网络模型,提出了一种基于粒子群优化算法和SOM网络的聚类算法(PSO/SOM),使用PSO对SOM网络进行训练来代替SOM的启发式训练方法.将PSO/SOM算法用于对Wine和Iris等数据集进行模式聚类识别,可以得到较优的聚类识别效果.相比标准SOM算法能有效提高网络映射的准确程度,降低网络的量化误差和拓扑误差,同时也降低了错聚率,实验结果验证了本算法的有效性. 相似文献
17.
吴婷 《高技术通讯(英文版)》2009,15(4):384-387
Aiming at the topic of electroencephalogram (EEG) pattern recognition in brain computer interface (BCI), a classification method based on probabilistic neural network (PNN) with supervised learning is presented in this paper. It applies the recognition rate of training samples to the learning progress of network parameters. The learning vector quantization is employed to group training samples and the Genetic algorithm (GA) is used for training the network’s smoothing parameters and hidden central vector for determining hidden neurons. Utilizing the standard dataset I(a) of BCI Competition 2003 and comparing with other classification methods, the experiment results show that the best performance of pattern recognition is got in this way, and the classification accuracy can reach to 93.8%, which improves over 5% compared with the best result (88.7%) of the competition. This technology provides an effective way to EEG classification in practical system of BCI. 相似文献
18.
卷积神经网络的全连接层作为一个经典的分类器,是根据传统的梯度下降法来实现训练的,泛化能力有限.针对这一问题,提出了一种将卷积神经网络和极限学习机相结合的混合模型应用于图像分类领域.卷积神经网络用于从输入图像中提取特征,特征映射最终会被编码成一维向量送入极限学习机中进行分类.给出了混合模型的详细设计,包括参数设计、结构分... 相似文献
19.
提出了一种基于目标反传的前馈式神经网络训练算法,该算法将网络的目标输出信息反传到网络的每一个隐层上,于是将神经网络的训练问题转化为求解一系列线性方程组和线性不等式组的问题,数值实验结果表明本文提出的方法与传统的BP算法相比提高了网络的训练速度. 相似文献
20.
《阜阳师范学院学报(自然科学版)》2020,(1):58-63
本文针对当前室内地磁定位技术存在地磁信号不稳定和地磁指纹不唯一所造成定位误差大等问题,提出一种基于集成学习与BP神经网络的室内地磁定位方法,提高地磁定位精度。将BP神经网络作为弱预测器,通过集成学习的方法把多组弱预测器集成为强预测器,使用地磁数据进行室内定位,与地磁指纹库中的真实位置信息进行对比并计算出定位误差。结果表明本方法与KNN、DTW以及BP神经网络相比,总平均定位误差分别降低了2.55、1.33和0.4 m。 相似文献