首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
By using the exponential dichotomy and the averaging method,a perturbation theoryis established for the almost periodic solutions of an almost differential system.Suppose that the almost periodic differential system(dx)/(dt)=f(x,t) ε~2g(x,t,ε)(1)has an almost periodic solution x=x_0(t,M)for ε=0,where M=(m_1,…,m_k)is theparameter vector.The author discusses the conditions under which(1)has an almostperiodic solution x=x(t,ε)such that x(t,ε)=x_0(t,M)holds uniformly.The results obtained are quite complete.  相似文献   

2.
In this paper the author discusses the quasilinear parabolic equation $$\[\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial {x_i}}}[{a_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}] + {b_i}(x,t,u)\frac{{\partial u}}{{\partial {x_i}}} + c(x,t,u)\]$$ Which is uniformly degenerate at $\[u = 0\]$. Let $\[u(x,t)\]$ be a classical solution of the equation satisfying $\[0 < u(x,t) \le M\]$. Under some assumptions the author establishes the interior estimations of Holder coefficient of the solution for the equation and the global estimations for Cauchy problems and the first boundary value problems, where Holder ooeffioients and exponents are independent of the lower positive bound of $\[u(x,t)\]$.  相似文献   

3.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

4.
In this paper, we consider the relative position of limit cycles for the system $$\[\begin{array}{*{20}{c}} {\frac{{dx}}{{dt}} = \delta x - y + mxy - {y^2}}\{\frac{{dy}}{{dt}} = x + a{x^2}} \end{array}\]$$ under the condition $$\[a < 0,0 < \delta \le m,m \le \frac{1}{a} - a\]$$ The main result is as follows: (i)Under Condition (2), if $\[\delta = \frac{m}{2} + \frac{{{m^2}}}{{4a}} \equiv {\delta _0}\]$, then system $\[{(1)_{{\delta _0}}}\] $ has no limit cycles and on singular closed trajectory through a saddle point in the whole plane, (ii)Under condition (2), the foci 0 and R'' cannot be surrounded by the limit cycles of system (1) simultaneously.  相似文献   

5.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

6.
This paper deals with the following IBV problem of nonlinear parabolic equation: $$\[\left\{ {\begin{array}{*{20}{c}} {{u_t} = \Delta u + F(u,{D_x}u,D_x^2u),(t,x) \in {B^ + } \times \Omega ,}\{u(0,x) = \varphi (x),x \in \Omega }\{u{|_{\partial \Omega }} = 0} \end{array}} \right.\]$$ where $\[\Omega \]$ is the exterior domain of a compact set in $\[{R^n}\]$ with smooth boundary and F satisfies $\[\left| {F(\lambda )} \right| = o({\left| \lambda \right|^2})\]$, near $\[\lambda = 0\]$. It is proved that when $\[n \ge 3\]$, under the suitable smoothness and compatibility conditions, the above problem has a unique global smooth solution for small initial data. Moreover, It is also proved that the solution has the decay property $\[{\left\| {u(t)} \right\|_{{L^\infty }(\Omega )}} = o({t^{ - \frac{n}{2}}})\]$, as $\[t \to + \infty \]$.  相似文献   

7.
Consider the two-sided truncation distrbution families written in the formf(x,θ)dx=w(θ_1, θ_2)h(x)I_([θ_1,θ_2])(x)dx, where θ=(θ_1,θ_2).T(x)=(t_1(x), t_2(x))=(min(x_1,…,x_m), max(x_1, …,x_m))is a sufficient statistic and its marginal density is denoted by f(t)dμ~T. The prior distribution of θ belongs to the familyF={G:∫‖θ‖~2dG(θ)<∞}.In this paper, the author constructs the empirical Bayes estimator (EBE) of θ, φ_n (t), by using the kernel estimation of f(t). Under a quite general assumption imposed upon f(t) and h(x), it is shown that φ_n(t) is an asymptotically optimal EBE of θ.  相似文献   

8.
This note is concerned with the equation $$\[\frac{{{d^2}x}}{{d{t^2}}} + g(x) = p(t)\begin{array}{*{20}{c}} {}&{(1)} \end{array}\]$$ where g(x) is a continuously differentiable function of a $\[x \in R\]$, $\[xg(x) > 0\]$ whenever $\[x \ne 0\]$, and $\[g(x)/x\]$ tends to $\[\infty \]$ as \[\left| x \right| \to \infty \]. Let p(t) be a bounded function of $\[t \in R\]$. Define its norm by $\[\left\| p \right\| = {\sup _{t \in R}}\left| {p(t)} \right|\]$ The study of this note leads to the following conclusion which improves a result due to J. E. Littlewood, For any given small constants $\[\alpha > 0,s > 0\]$, there is a continuous and roughly periodic(with respect to $\[\Omega (\alpha )\]$) function p(t) with $\[\left\| p \right\| < s\]$ such that the corresponding equation (1) has at least one unbounded solution.  相似文献   

9.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

10.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

11.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

12.
13.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

14.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

15.
In this paper the problem of the infinitesimal deformation of the surfaces of revolution with mixed Ganss curvature is studied. In connection with this problem a differential equation of mixed type, which belongs to the second degenerate type, in the form , \[k(\rho ){w_{\rho \rho }} + {w_{\theta \theta }} + \rho {w_\rho } = 0({\rho _1} < \rho < {\rho _2},0 \leqslant \theta \leqslant 2\pi )\] is obtained, where w is the component of the displacement vector of the infinitesimal deformation in the direction of the rotation axis, and\[k(\rho ) = \rho {z^'}(\rho )/{z^{'}}(\rho ),z(\rho )\] being the meridian curve of the surface of revolution. Suppose a surface of revolution S has two holes \[{L_1}(\rho = {\rho _1})\] and \[{L_2}(\rho = {\rho _2})\], then the meridian of the surface satisfies the condition \[{z^'}(\rho ) = 0\] on \[\rho = {\rho _0}({\rho _1} < {\rho _0} < {\rho _2})\]. If the Gauss curvature K of the surface is a strictly monotone increasing function of \[\rho \], \[{K^'}(\rho ) > 0,{\rho _1} < \rho < {\rho _2}\],then the surface S does not permit of the non-trivial sliding on the plane containing the boundary L2 of the surface. The rigidity of the surface is proved by the energy integral method. Moreover, the uniqueness of the Tricomi problem, the generalized Tricomi problem, the degenerate Tricomi problem and the Frankl's problem for a piece of surface with mixed curvature are studied.  相似文献   

16.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

17.
In this paper, the author considers the two-dimensional delay systems $$\[\mathop x\limits^ \cdot (t) = Ax(t) + Bx(t - r),A,B \in {R^{2 \times 2}},x \in {R^2},r = const \ge 0\]$$ and gives the necessary and sifficient conditions under which where exists a simple type of positive definite Liapunov functional $$\[V(\varphi ) \buildrel \Delta \over = {\varphi ^''}(0){T_\varphi }(0) + \int_{ - \tau }^0 {{\varphi ^''}(\theta )E\varphi (\theta )d\theta } \]$$ and $\[\alpha (s)\]$(where T , E are positive definite 2x2 matrices, $\[\varphi \in C([ - \tau ,0],{R^n})\]$, "." stands for transpose, $\[\alpha (s)\]$ is continuous and $\[\alpha (0) = 0,\alpha (s) > 0,s > 0\]$. such that $\[{V_{(*)}}(\varphi ) \le - \alpha (\left| {\varphi (0)} \right|).\]$.  相似文献   

18.
19.
Consider the discrete exponential family written in the form P_θ(X=x)=h(x)β(θ)θ~x,x=0,1,2,…,where h(x)>0,x=0,1,2,…,The prior distribution of θ belongs to thefa  相似文献   

20.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号