首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the femtosecond laser writing of optical waveguides inside Foturan glass at various pulse energies and focusing depths. An optimal waveguide fabricated solely by femtosecond laser irradiation showed a refractive index modulation of ∼1.7×10-3 and a minimum transmission loss of ∼0.80 dB/cm. This type of waveguide had lower transmission loss than those fabricated by a hybrid process of femtosecond laser exposure and following thermal treatment. An optical splitter was also fabricated at high pulse energy. PACS 42.65.Re; 42.82.Et; 42.70.Gi  相似文献   

2.
We report on the fabrication of hollow optical waveguides in fused silica using femtosecond laser micromachining. We show that in such hollow waveguides, high-intensity femtosecond laser beams can be guided with low optical loss. Our technique, which was established earlier for fabrication of optofluidic structures in glass, can ensure a high smoothness at the inner surfaces of the hollow waveguides and provide the unique capability of fabrication of hollow waveguides with complex geometries and configurations. A transmission of ∼90% at 633 nm wavelength is obtained for a 62-mm-long hollow waveguide with an inner diameter of ∼250 μm. In addition, nonlinear propagation of femtosecond laser pulses in the hollow waveguide is demonstrated, showing that the spectral bandwidth of the femtosecond pulses can be broadened from ∼27.2 to ∼55.7 nm.  相似文献   

3.
4.
Using tightly focused femtosecond laser pulses to irradiate lines in aluminosilicate glass, embedded lines with increased refractive index, which function as optical waveguides were observed. The pulse energy (4.5–11.2 μJ) and writing speed (50–700 μm/s) were shown to affect the resultant optical properties of the waveguides such as the magnitude of refractive index change, core diameter and propagation mode. At pulse energies above 5 μJ, two types of structures were observed, namely an inhomogeneous void-like structure and a cross-sectional crack-like structure. These structures were found to affect significantly the resultant waveguiding properties of the irradiated lines. Using pulse energy of 5 μJ or below, single mode waveguides were fabricated. Raman spectroscopy showed that the fs laser pulses generated structural changes to the aluminosilicate glass. The fabrication of a 1×4 splitter was also demonstrated. PACS 42.62.-b; 42.82.-m; 81.05.Kf  相似文献   

5.
We studied the influence of focusing depth on the index change threshold and damage threshold of silica glass irradiated by a focused 120 fs laser beam. Both thresholds increased with the focusing depth. The aspect ratio of the waveguide cross section can be selected by changing the focusing depth. A 5 mm long waveguide was written at the depth of 2100 μm, which was single mode at 632.8 nm and exhibited propagation loss of 0.56 dB/cm. The refractive index change was calculated to be ∼2.47×10-3. The influence of the focusing depth should be considered in multi-layer devices as shown in the fabrication of a 3×3 waveguide array. PACS 42.62.-b; 42.82.Et; 81.05.Kf  相似文献   

6.
Symmetric buried waveguides were fabricated in neodymium-doped KGd(WO4)2 by using femtosecond laser writing in the low-frequency regime. Due to stress-induced index changes in the regions surrounding the focal spot, mode guidance was demonstrated and low propagation losses of ∼0.2 dB/cm were obtained. Based on the comparison of the waveguides fabricated with different parameters, we present further significant analysis to get low-loss waveguides with symmetrical mode profiles. According to the reconstructed index profile, the mode distribution was numerically calculated by the beam propagation method, which showed a reasonable agreement with the experimental results.  相似文献   

7.
Multi-mode interference waveguides are fabricated inside silica glass by transverse writing geometry with femtosecond laser pulses. The influences of several writing and reading factors on the output mode are systematically studied. The experimental results of straight waveguides are in good agreement with the simulations by the beam propagation method. By integrating a straight waveguide with a bent waveguide, a 1× 2 multi-mode splitter is formed and 2×3 lobes are observed in the output mode.  相似文献   

8.
Optical crosstalk from a 1.3 μm laser to a 1.55 μm photodiode on a single InP substrate, and its suppression within 1.3 μm/1.5 μm Y-junction transceiver OEICs, has been analyzed experimentally. The results indicate that the optical crosstalk suppression is limited by the accumulated light in the OEIC substrate coming mainly from the spontaneous emission of the integrated laser and from stray light at the laser–waveguide butt joint interface. For OEICs, integrating lasers and photodetectors, the achievable optical intra-chip crosstalk at present will be in the range of 30–40 dB at the required small die dimensions. Received: 16 May 2001 / / Published online: 23 October 2001  相似文献   

9.
Vertical micro-holes were fabricated inside a photosensitive glass (FOTURAN) by focused femtosecond laser (λ = 775 nm) writing, followed by heat treatment and wet chemical etching in 8% hydrofluoric acid solution for 50 min. The micro-holes were analyzed by optical and scanning electron microscopy, and was found they own circular cross-section and clear edge. At present, micro-holes with aspect ratio of about 7 is achieved. By varying the incident laser fluence in a range of 2.3–36.2 J/cm2 and the laser writing velocity in 100–1000 μm/s, the influences of femtosecond laser parameters on the formation of micro-holes are characterized as that: writing velocities hardly affect the micro-hole diameter, while relatively lower laser fluences result in smaller diameter, and the cross-section is more circular in this case. The possible reason for this phenomenon is discussed.  相似文献   

10.
Zirconia titania organically modified silicate (ZrO2-TiO2-ORMOSIL) thin film waveguides of thickness from 0.4 to 7.0 μm were synthesized using low temperature sol–gel method. Narrow linewidth distributed feedback (DFB) lasing was demonstrated in rhodamine 6G-doped ZrO2-TiO2-ORMOSIL waveguides. Simultaneous tuning of multiple-output wavelengths was achieved in the dye-doped waveguides by varying the period of the gain modulation generated by a nanosecond Nd:YAG laser at 532 nm. As many as eight separate output wavelengths were observed for a planar ZrO2-TiO2-ORMOSIL waveguide of thickness 7.0-μm. The output polarizations of the DFB waveguide lasers can be tuned by varying the polarization of the crossing pump beams. TE and TM optical waves belonging to the same propagation mode were generated by crossing two polarized pump beams, resulting in an effective double of the number of output wavelengths. Continuous tuning of the polarized laser outputs was also achieved by varying the crossing angle.  相似文献   

11.
12.
Zhang H  Eaton SM  Herman PR 《Optics letters》2007,32(17):2559-2561
For the first time to our knowledge, high-strength (>30 dB) first-order Bragg grating waveguides were fabricated in bulk fused silica glass in a single-scanning step by modulating a high-repetition-rate femtosecond fiber laser with an external acousto-optic modulator. The modulation induced a waveguide segmentation by delivering controlled bursts of laser pulses to define an array of partially overlapped refractive index voxels. With appropriate choice of modulation frequency and sample scanning speed, low loss waveguides could be formed at high writing speeds to yield sharp Bragg spectral resonances tunable over the 1300 to 1550 nm telecom band. Effects of acousto-optic modulation duty cycle on propagation loss and grating strength are characterized. This modulation method offers facile control and integration of multiwavelength Bragg grating devices to enhance overall functionality of optical circuits in three-dimensional geometries.  相似文献   

13.
A simple Dy3+-doped chalcogenide glass fibre laser design for mid-infrared light generation is studied using a one dimensional rate equation model. The fibre laser design employs the concept of cascade lasing. The results obtained demonstrate that efficient cascade lasing may be achieved in practice without the need for fibre grating fabrication, as a sufficient level of feedback for laser action is provided by Fresnel light reflection at chalcogenide glass fibre–air interfaces. Further enhancement of the laser efficiency can be achieved by terminating one of the fibre ends with a mirror. A numerical analysis of the effect of the Dy3+ doping concentration and fibre loss on the laser operation shows that with 5 W of pump power, at 1.71 μm wavelength, output powers above 100 mW at ∼ 4.5 μm wavelength can be achieved with Dy3+ ion concentrations as low as 3 × 1019 cm−3, when fibre loss is of the order 1dB/m.  相似文献   

14.
This Letter reports on the fabrication of low-loss waveguides in gallium-lanthanum-sulfide chalcogenide glasses using an ultrafast laser. Spatial beam shaping and temporal pulse width tuning were used to optimize the guided mode profiles and optical loss of laser-written waveguides. Highly symmetric single-mode waveguides guiding at 1560 nm with a loss of 0.65 dB/cm were fabricated using 1.5 ps laser pulses. This Letter suggests a pathway to produce high quality optical waveguides in substrates with strong nonlinearity using the ultrafast laser direct writing technique.  相似文献   

15.
Optical loss measurements in femtosecond laser written waveguides in glass   总被引:1,自引:0,他引:1  
The optical loss is an important parameter for waveguides used in integrated optics. We measured the optical loss in waveguides written in silicate glass slides with high repetition-rate (MHz) femtosecond laser pulses. The average transmission loss of straight waveguides is about 0.3 dB/mm at a wavelength of 633 nm and 0.05 dB/mm at a wavelength of 1.55 μm. The loss is not polarization dependent and the waveguides allow a minimum bending radius of 36 mm without additional loss. The average numerical aperture of the waveguides is 0.065 at a wavelength of 633 nm and 0.045 at a wavelength of 1.55 μm. In straight waveguides more than 90% of the transmission loss is due to scattering.  相似文献   

16.
A new idea of using LPD (liquid phase deposition) to prepare a GeO2 thick reflective film for hollow waveguide delivery of CO2 laser radiation was investigated in this work. The LPD process was achieved by designedly adding acid to GeO2–aqueous ammonia. The addition of acid could induce the transformation of germanate ions into GeO2 solutes, leading to the deposition of a GeO2 ceramic film when the concentration of GeO2 solute is higher than its saturation solubility. It was found that the highest film growth rate occurred at a pH value of 3, while a film with low surface roughness and good adhesion to the substrate was produced at a pH value of 2 and the film could be converted to a smooth, compact hexagonal GeO2 film by heat treatment at 1120 °C for 30 min. Two abnormal dispersion bands within 7.6–9 μm and 9.6–11.2 μm were mainly caused by the silica glass substrate and the GeO2 film, respectively. The film was thick enough to achieve the total reflectance of the CO2 laser radiation. The use of this GeO2 film in a hollow waveguide structure for CO2 laser radiation delivery is discussed based on the transmission loss and the feasibility of the deposition of the GeO2 film inside silica capillary tubes. The results show that the hollow waveguides with low transmission loss are most likely fabricated at a low cost using the LPD-derived GeO2 reflective film. PACS 78.20.-e; 78.66.-w; 42.70.-a; 78.20.Ci; 78.40.-q  相似文献   

17.
Nasu Y  Kohtoku M  Hibino Y 《Optics letters》2005,30(7):723-725
We describe a low-loss single-mode waveguide in planar light-wave circuit (PLC) glass doped with boron and phosphorus, which is more difficult to write than pure-silica glass. The written waveguide has a rectangular core, a symmetric near-field pattern, and a propagation loss of 0.35 dB/cm. The loss that originates from the mode-field mismatch between the mode-field diameters of the written and the PLC waveguides is less than 0.1 dB/point. In addition, we successfully connected PLC waveguides with a 500-microm-long waveguide written with a laser. The laser-written waveguide can flexibly connect PLC waveguides with a low coupling loss.  相似文献   

18.
In this paper, the fabrication and characterization of a high-index low loss polyethylene terephatate (PET) optical waveguide is presented. Dip-coating technique has been used to fabricate the optical waveguide using PET. Various waveguide properties, such as mode effective refractive index, optical loss, dispersion and waveguide thickness as a function of temperature of waveguides and substrates have been reported. Optical losses of as low as 0.7 dB cm–1 waveguides can be obtained if the formation temperature can be controlled between 30 and 35°C. In addition, we suggested that it is a suitable material for optoelectronic waveguide devices.  相似文献   

19.
An interest in energy transport in 3D chains of metal nanoparticles is oriented towards future applications in nanoscale optical devices. We consider plasmonic waveguides composed of silver nanoplates arranged in several geometries to find the one with the lowest attenuation. We investigate light propagation of 500-nm wavelength along different chains of silver nanoplates of subwavelength length and width and wavelength-size height. Energy transmission of the waveguides is analysed in the range of 400–2000 nm. We find that chain of short parallel nanoplates guides energy better than two electromagnetically coupled continuous stripes and all other considered nonparallel structures. In a wavelength range of 500–600 nm, this 2-μm long 3D waveguide transmits 39% of incident energy in a channel of λ × λ/2 cross section area.  相似文献   

20.
We demonstrate flexible and low-cost fabrication of dielectric-loaded surface plasmon–polariton waveguides. The waveguide structures are fabricated by two-photon polymerization of commercially available, spin-coatable epoxy-based UV-lithographic resist on a metal covered glass slide. The excitation and guiding properties of the plasmonic waveguides are investigated in the far-field at a wavelength of 632.8 nm by imaging the leakage radiation from the waveguide modes. The optimum bending radius for right angle bends is measured to 6 μm providing a transmission of up to 70%. The functionality of more complex Y-splitters is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号