首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A study is made of one-dimensional (plane and axisymmetric) problems of the isothermal flow of gas through a porous medium for quadratic resistance law. Self-similar equations for the velocity and pressure of the gas in the porous medium are obtained. Analytical expressions for the pressure and velocity of the gas for constant initial pressure in the medium are obtained. A quadratic dependence of the resistance on the velocity [1,2] is used to describe the motion of the gas in the porous medium at high Reynolds numbers. (Re > 10).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 73–77, March–April, 1985.  相似文献   

2.
A numerical solution is examined for a system of equations of one-dimensional isothermal flow of a perfect gas in a horizontal pipe with a periodically varying function of the flow rate at the boundary. The numerical solution is compared with the solution of the linearized problem. The results can be used to calculate the pulsating motion of gas in the pipeline systems of piston compressors [1].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 85–88, July–August, 1972.  相似文献   

3.
The solution of equations describing turbulent isobaric flow of a chemically reacting gas in a heated tube is investigated analytically. Solutions of the ordinary nonlinear differential equations are obtained for almost frozen flow by the perturbation method, and for almost equilibrium flow by an asymptotic method taking account of the zero and first approximations, Linear differential equations in variations are written down to find the subsequent approximations.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 8–14, July–August, 1973.  相似文献   

4.
The antiplane elastic deformation of a homogeneous isotropic prestretched cylindrical body is studied in a nonlinear formulation in actual–state variables under incompressibility conditions, the absence of volume forces, and under constant lateral loading along the generatrix. The boundary–value problem of axial displacement is obtained in Cartesian and complex variables and sufficient ellipticity conditions for this problem are indicated in terms of the elastic potential. The similarity to a plane vortex–free gas flow is established. The problem is solved for Mooney and Rivlin—Sonders materials simulating strong elastic deformations of rubber–like materials. Axisymmetric solutions are considered.  相似文献   

5.
The influence of thermal excitation on a finite-amplitude vortex disturbance in a shear flow of a molecular gas is studied in a model problem. The evolution of such vortex structures is typical of both the nonlinear stage of the laminar–turbulent transition and for developed turbulence. Since the excitation level was assumed to be comparatively low, full Navier–Stokes equations for a compressible heat-conducting gas were used in calculations; nonequilibrium was taken into account by the coefficient of bulk viscosity. As the bulk viscosity increases in the range of realistic values, the disturbance-energy damping rate in a weakly compressible flow increases approximately by 10%. The increase in the Mach number enhances the effect of disturbance suppression.  相似文献   

6.
The flow around the afterbody of a plate of finite thickness in a supersonic gas stream is investigated on the basis of a numerical solution of the time-dependent Navier-Stokes equations for a compressible viscous heat-conducting gas. The change in the flow pattern with the onset of transverse slot injection from the body surface in the vicinity of the base section is studied. For constant supersonic injection, both steady and unsteady flow regimes could be obtained depending on the values of certain relevant parameters.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 157–163, March–April, 1996.  相似文献   

7.
This article considers the problem of strong blowing on the surface of a body immersed in a supersonic gas flow. It is not difficult to show that for intense blowing the motion of the blown gas can be described by the Euler equations, and viscosity and transport effects appear only in the neighborhood of the contact surface separating the oncoming flow and the blown gas. It is shown that to a first approximation the pressure is constant across the layer and equal to the pressure at the contact surface.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, pp. 97–104, No. 5, September–October, 1973.  相似文献   

8.
Plane steady flow is considered for an ideal incompressible stratified fluid in a gravitational field of force. It is a characteristic feature of these flows that the density is constant and Bernoulli's constant remains the same along a streamline. Internal waves arise because of ponderability in the stratified fluid; they are not due to the presence of a free surface. These wave motions are studied in detail in the linear formulation, but flows of the solitary wave type can be described only by nonlinear equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 174–178, March–April, 1986.  相似文献   

9.
A statistical analysis is made of random nonlinear plane waves in a gas with polytropic exponent = 3 by reduction of the original problem to an auxiliary Cauchy boundary-value problem for a system of stochastic ordinary differential equations. The probability distribution is found for the velocity and density of the gas in the case when at the initial time the gas density is constant and the velocity field Gaussian and statistically homogeneous. It is noted that there exists a finite time of statistical nonlinear interaction of colliding waves during which the probability distribution of the velocity and density of the gas can be essentially non-Gaussian.Translated from Izvesitya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–104, September–October, 1982.I thank A. N. Malakhov and S. N. Gurbatov for helpful discussions.  相似文献   

10.
The results of solution of the self-similar problem of planar flow of gas through a porous medium in the case of a quadratic law of resistance [1] are generalized to the case of axisymmetric motion. The equation in similarity variables for the velocity of isothermal gas flow is reduced to an equation having cylindrical functions as solution. Analytic dependences of the pressure and the gas velocity on the coordinate and time are obtained for a given flow rate of the gas at the coordinate origin and for zero Initial gas pressure in the porous medium.Translated from Izvestlya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza., No. 4, pp. 168–171, July–August, 1982.  相似文献   

11.
Chaotic Analysis of Nonlinear Viscoelastic Panel Flutter in Supersonic Flow   总被引:2,自引:0,他引:2  
In this paper chaotic behavior of nonlinear viscoelastic panels in asupersonic flow is investigated. The governing equations, based on vonKàarmàn's large deflection theory of isotropic flat plates, areconsidered with viscoelastic structural damping of Kelvin's modelincluded. Quasi-steady aerodynamic panel loadings are determined usingpiston theory. The effect of constant axial loading in the panel middlesurface and static pressure differential have also been included in thegoverning equation. The panel nonlinear partial differential equation istransformed into a set of nonlinear ordinary differential equationsthrough a Galerkin approach. The resulting system of equations is solvedthrough the fourth and fifth-order Runge–Kutta–Fehlberg (RKF-45)integration method. Static (divergence) and Hopf (flutter) bifurcationboundaries are presented for various levels of viscoelastic structuraldamping. Despite the deterministic nature of the system of equations,the dynamic panel response can become random-like. Chaotic analysis isperformed using several conventional criteria. Results are indicative ofthe important influence of structural damping on the domain of chaoticregion.  相似文献   

12.
Theoretical study of a three-dimensional laminar boundary layer is a complex problem, but it can be substantially simplified in certain particular cases and even reduced to the solution of ordinary differential equations.One such particular case is the flow of a compressible gas on a streamline in conical external flow. The case is of considerable practical importance because the local heat fluxes may take extremal values on such lines.Such flow, except for the conical case, has been examined [1–4], and an approximate method has been given [1] on the basis of integral relationships and a special form for the approximating functions. A numerical solution has been given [2, 3] for such flow around an infinite cylinder. It was assumed in [1–3] that the Prandtl number and the specific heats were constant, and that the dynamic viscosity was proportional to temperature. Heat transfer has been examined [4] near a cylinder exposed to a flow of dissociated air.Here we give results from numerical solution of a system of ordinary differential equations for the flow of a compressible gas in a laminar boundary layer on streamlines in conical external flow, with or without influx or withdrawal of a homogeneous gas. It is assumed that the gas is perfect and that the dynamic viscosity has a power-law temperature dependence.  相似文献   

13.
An analysis is performed to study the free convection of a dusty‐gas flow along a semi‐infinite isothermal vertical cylinder. The governing equations of the flow problem are transformed into non‐dimensional form and the resulting nonlinear, coupled parabolic partial differential equations have been solved numerically using an implicit finite difference scheme of Crank–Nicholson type. The flow variables such as gas–velocity, dust‐particle velocity and temperature, shearing stress and heat transfer coefficients are calculated numerically for various parameters occurring in the problem. It is observed that due to the presence of dust particles, the gas velocity is found to decrease. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The complete Navier-Stokes equations are used to calculate supersonic perfect gas flow past a circular isothermal cylinder by the method described in [1]. The effects of the Mach number M=2.5–10 and the Reynolds number Re=30-105 on the flowfield structure and heat transfer to the cylinder wall are investigated. Special attention is paid to the study of the near wake and the local characteristics on the leeward side of the cylinder.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 107–115, November–December, 1993.  相似文献   

15.
Over the past two decades most discussions of the simulation of miscible displacement in porous media were related to incompressible flow problems; recently, however, attention has shifted to compressible problems. The first goal of this paper is the derivation of the governing equations (mathematical models) for a hierarchy of miscible isothermal displacements in porous media, starting from a very general single-phase, multicomponent, compressible flow problem; these models are then compared with previously proposed models. Next, we formulate an extension of the modified method of characteristics with adjusted advection to treat the transport and dispersion of the components of the miscible fluid; the fluid displacement must be coupled in a two-stage operator-splitting procedure with a pressure equation to define the Darcy velocity field required for transport and dispersion, with the outer stage incorporating an implicit solution of the nonlinear parabolic pressure equation and an inner stage for transport and diffussion in which the mass fraction equations are solved sequentially by first applying a globally conservative Eulerian–Lagrangian scheme to solve for transport, followed by a standard implicit procedure for including the diffusive effects. The third objective is a careful investigation of the underlying physics in compressible displacements in porous media through several high resolution numerical experiments. We consider real binary gas mixtures, with realistic thermodynamic correlations, in homogeneous and heterogeneous formations.  相似文献   

16.
Automodel solutions of the equations of a laminar, multicomponent, isothermal boundary layer are considered for high rates of injection. The asymptotic velocity profiles and the thickness of the boundary layer are given for various negative pressure gradients (>0), A numerical solution is presented for the boundary-layer equations when injection involves the flow of a gas mixture comprising hydrogen, nitrogen, and carbon dioxide around the surface. The asymptotic solution is compared with the numerical solution, and its ranges of applicability are established.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 49–52, May–June, 1971.  相似文献   

17.
In the present study using the Newtonian approximation [1] we obtain an analytical solution to the problem of flow of a steady, uniform, hypersonic, nonviscous, radiating gas past a sphere. The three-dimensional radiative-loss approximation is used. A distribution is found for the gasdynamic parameters in the shock layer, the withdrawal of the shock wave and the radiant thermal flux to the surface of the sphere. The Newtonian approximation was used earlier in [2, 3] to analyze a gas flow with radiation near the critical line. In [2] the radiation field was considered in the differential approximation, with the optical absorption coefficient being assumed constant. In [3] the integrodifferential energy equation with account of radiation was solved numerically for a gray gas. In [4–7] the problem of the flow of a nonviscous, nonheat-conducting gas behind a shock wave with account of radiation was solved numerically. To calculate the radiation field in [4, 7] the three-dimensional radiative-loss approximation was used; in [5, 6] the self-absorption of the gas was taken into account. A comparison of the equations obtained in the present study for radiant flow from radiating air to a sphere with the numerical calculations [4–7] shows them to have satisfactory accuracy.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 44–49, November–December, 1972.In conclusion the author thanks G. A. Tirskii and É. A. Gershbein for discussion and valuable remarks.  相似文献   

18.
One component of the solution to the problem of flow around a corner within the scope of magnetohydrodynamics, with the interception or stationary reflection of magnetohydrodynamic shock waves, and also steady-state problems comprising an ionizing shock wave, is the steady-state solution of the equations of magnetohydrodynamics, independent of length but depending on a combination of space variables, for example, on the angle. The flows described by these solutions are called stationary simple waves; they were considered for the first time in [1], where the behavior of the flow was investigated in stationary rotary simple waves, in which no change of density occurs. For a magnetic wave, of parallel velocity, the first integrals were found and the solution was reduced to a quadrature. The investigations and the applications of the solutions obtained for a qualitative construction of the problems of streamline flow were continued in [2–8]. In particular, problems were solved concerning flow around thin bodies of a conducting ideal gas. The general solution of the problem of streamline flow or the intersection of shock waves was not found because stationary simple waves with the magnetic field not parallel to the flow velocity were not investigated. The necessity for the calculation of such a flow may arise during the interpretation of the experimental results [9] in relation to the flow of an ionized gas. In the present paper, we consider stationary simple waves with the magnetic field not parallel to the flow velocity. A system of three nonlinear differential equations, describing fast and slow simple waves, is investigated qualitatively. On the basis of the pattern constructed of the behavior of the integral curves, the change of density, magnetic field, and velocity are found and a classification of the waves is undertaken, according to the nature of the change in their physical quantities. The relation between waves with outgoing and incoming characteristics is explained. A qualitative difference is discovered for the flow investigated from the flow in a magnetic field parallel to the flow velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 130–138, September–October, 1976.The author thanks A. A. Barmin and A. G. Kulikovskii for constant interest in the work and for valuable advice.  相似文献   

19.
Formal asymptotic expansions of the solution of the steady-state problem of incompressible flow in an unbounded region under the influence of a given temperature gradient along the free boundary are constructed for high Marangoni numbers. In the boundary layer near the free surface the flow satisfies a system of nonlinear equations for which in the neighborhood of the critical point self-similar solutions are found. Outside the boundary layer the slow flow approximately satisfies the equations of an inviscid fluid. A free surface equation, which when the temperature gradient vanishes determines the equilibrium free surface of the capillary fluid, is obtained. The surface of a gas bubble contiguous with a rigid wall and the shape of the capillary meniscus in the presence of nonuniform heating of the free boundary are calculated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 61–67, May–June, 1989.  相似文献   

20.
A source-sink model of secondary flow excitation in a rotating cylinder, which describes the interaction between a circulator and a rotating gas, is proposed for a nonlinear system of Navier-Stokes equations, and the results of a numerical calculation of the resulting circulating flows are presented. The modified Newton's method employed in the numerical solution makes use of regularizing perturbations to ensure its stability and convergence at low Ekman numbers and high rates of rotation of the cylinder. The combined effect of mechanical and thermal means of flow excitation and the influence of viscous energy dissipation are considered.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 39–44, July–August, 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号