首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transmission spectra of thermally evaporated Ga50Se45S5 films were measured over the wavelength range 300–900 nm. A simple method, suggested by Swanepoel, was used for the determination of the optical constants and thickness of the films. Increasing the thickness of the film beyond 450 nm does not affect the optical constants. The dependence of the absorption coefficient on the photon energy () at the edge of the absorption band is well described by the relation hν=β(hν−Eopt)2 with an optical gap equals 2.4 eV. A good fit of the experimental points with Tauc relation indicates that non-direct transition is the most probable mechanism responsible for the photon absorption inside the investigated film.  相似文献   

2.
Carbon nitride thin films were deposited on Si(1 0 0) substrate by microwave plasma-enhanced chemical vapor deposition (PECVD). Hexamethylenetetramine (HMTA) was used as carbon and nitrogen source while N2 gas was used as both nitrogen source and carrier gas. The sp3-bonded C---N structure in HMTA was considered significantly in the precursor selection. X-ray diffraction analysis indicated that the film was a mixture of crystalline - and β-C3N4 as well as graphitic-C3N4 and β-Si3N4 which were not easily distinguished. Raman spectroscopy also suggested the existence of - and β-C3N4 in the films. X-ray photoelectron spectroscopy study indicated the presence of sp2- and sp3-bonded C---N structures in the films while sp3C---N bonding structure predominated to the sp2 C---N bonding structure in the bulk composition of the films. N was also found to be bound to Si atoms in the films. The product was, therefore, described as CNx:Si, where x depends on the film depth, with some evidences of crystalline C3N4 formation.  相似文献   

3.
Bi2Te3 films were prepared by thermal evaporation technique. X-ray diffraction analysis for as-deposited and annealed films in vacuum at 150 °C were polycrystalline with rhombohedral structure. The crystallite size is found to increase as the film thickness increases and has values in the range 67–162 nm. The optical constants (the refractive index, n, and absorption index, k) were determined using transmittance and reflectance data in the spectral range 2.5–10 μm for Bi2Te3 films with different thicknesses (25–99.5 nm). Both n and k are independent on the film thickness in the investigated range. It was also found that Bi2Te3 is a high refractive index material (n has values of 4.7–8.8 in the wavelength range 2.5–10 μm). The allowed optical transitions were found to be direct optical transitions with energy gap  eV. The optical conductivities σ1 = ƒ() and σ2 = f() show distinct peaks at about 0.13 and 0.3 eV, respectively. These two peaks can be attributed to optical interband transitions.  相似文献   

4.
The effects of varying the temperature and duration of the post-deposition anneal in watersaturated oxygen were investigated for YBa2Cu3O7−δ films of varying thickness. The films were produced by laser ablation from pressed powder targets consisting of BaF2,Y2O3, and CuO mixtures. This technique produces superconducting films with a highly textured surface. The films were fabricated on SrTiO3 substrates and were analyzed with X-ray diffraction, scanning electron microscopy, and temperature dependent resistivity. Critical current density (Jc) measurements were performed in magnetic fields up to 1 T. For film thickness on the order of 900 nm, completely c-axis oriented films were obtained with a 60 min anneal at 850°C. Thinner films required less annealing, either shorter times or lower temperatures, to achieve similar results, indicating that the optimal annealing conditions are dependent on film thickness.  相似文献   

5.
We have used oxygen plasma assisted MBE to grow epitaxial films of pyrolusite (β-MnO2) on TiO2(110) for thicknesses of one to six bilayers (BL). We define a bilayer to be a layer of Mn and lattice O and an adjacent layer of bridging O within the rutile structure. The resulting surfaces have been characterized in situ by reflection high-energy electron diffraction, low-energy electron diffraction, X-ray photoelectron spectroscopy and diffraction, and atomic force microscopy. Well-ordered, pseudomorphic overlayers form for substrate temperatures between 400 and 500°C. Mn–Ti intermixing occurs over the time scale of film growth (1 BL/min) for substrate temperatures in excess of 500°C. Films grown at 400–500°C exhibit island growth, whereas intermixed films grown at temperatures of 500–600°C are more laminar. 1 BL films grown at 450°C are more laminar than multilayer films grown at the same temperature, and form a well-ordered surface cation layer of Mn on the rutile structure with at most 10% indiffusion to the second cation layer.  相似文献   

6.
FeN thin films were deposited on glass substrates by dc magnetron sputtering at different Ar/N2 discharges. The composition, structure and the surface morphology of the films were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and atomic force microscopy (AFM). Films deposited at different nitrogen pressures exhibited different structures with different nitrogen contents, and the surface roughness depended on the mechanism of the film growth. Saturation magnetization and coercivity of all films were determined using superconducting quantum interference device, which showed that if N2/(Ar+N2) flow ratio was equal to or larger than 30% the nonmagnetic single-phase γ″-FeN appeared. If N2/(Ar+N2) flow ratio was less than 10%, the films consisted of the mixed phases of FeN0.056 and γ′-Fe16N2, whose saturation magnetizations were larger than that of -Fe. If N2/(Ar+N2) flow ratio was 10%, the phases of γ′-Fe4N and -Fe3N appeared, whose saturation magnetizations were lower than that of -Fe.  相似文献   

7.
Ti substituted BiFe1−xTixO3+δ films have been prepared on indium–tin oxide (ITO)/glass substrates by the sol–gel process. The films with x=0.00–0.20 were prepared at an annealing temperature of 600 °C. X-ray diffraction patterns indicate that all films adopt R3m structure and the films with x=0 and 0.10 show pure perovskite phase. Cross-section scanning shows the thickness of the films is about 300 nm. Through 0.05 Ti substitution, the 2Pr increases to 8.30 μC/cm2 from 2.12 μC/cm2 of the un-substituted BiFeO3 film and show enhanced ferroelectricity at room temperature. The 2Pr values are 2.63 and 0.44 μC/cm2 for the films with x=0.01 and 0.2, respectively. Moreover, the films with x=0.05 and 0.10 show enhanced dielectric property since the permittivity increases near 150 at the same measuring frequency. Through the substitution of Ti, the leakage conduction is reduced for the films with x=0.05–0.20.  相似文献   

8.
The modulated microwave absorption in YBa2Cu3O7−δ thin films was studied as a function of temperature, modulation amplitude, and microwave power. The comparative nature of weak links in YBaCuO thin films, ceramics, and powders is discussed.  相似文献   

9.
The oxidation of CoGa(1 0 0) at 700 K was studied by means of high resolution electron energy loss spectroscopy (EELS), scanning tunneling microscopy, low energy electron diffraction and Auger electron spectroscopy (AES). At 700 K, thin well-ordered β-Ga2O3 films grow on CoGa(1 0 0). The EEL spectrum of the Ga-oxide films exhibit Fuchs–Kliewer phonons at 305, 455, 645, and 785 cm−1. For low oxygen exposure (<0.2 L), the growth of oxide-islands starts at step edges and on defects. The oxide films have the shape of long, rectangular islands and are oriented in the [1 0 0] and [0 1 0] directions of the substrate. For higher oxygen exposure, islands of β-Ga2O3 are found also on the terraces. After an exposure of 200 L O2 at 700 K, the CoGa(1 0 0) surface is homogeneously covered with a thin film of β-Ga2O3.  相似文献   

10.
TiO2 and ZrO2 films are deposited by electron-beam (EB) evaporation and by sol-gel process. The film properties are characterized by visible and Fourier-transform infrared spectrometry, x-ray diffraction analysis, surface roughness measure, absorption and laser-induced damage threshold (LIDT) test. It is found that the sol-gel films have lower refractive index, packing density and roughness than EB deposited films due to their amorphous structure and high OH group concentration in the film. The high LIDT of sol-gel films is mainly due to their amorphous and porous structure, and low absorption. LIDT of EB deposited film is considerably affected by defects in the film, and LIDT of sol-gel deposited film is mainly effected by residual organic impurities and solvent trapped in the film.  相似文献   

11.
We examine several different reconstructions of the β-SiC(100) surface by the ab initio Car-Parrinello method. Our results confirm that the lowest energy c(2 × 2) reconstructed surface consists of triply bonded carbon dimers in a bridging position between neighboring underlying silicon dimers. Added hydrogen atoms bond to the carbon dimers, resulting in a lengthened double-bonded dimer, and a larger separation for the underlying silicon dimers, although those Si bonds do not disappear. The most stable structure found for the (3 × 2) reconstructed surface with a 1/3 monolayer excess of silicon is an alternate dimer row structure rather than the added dimer row model proposed by others. The energetics of various surface reactions that may be involved in growth of SiC are discussed.  相似文献   

12.
The pyrochlore to perovskite phase transformation was studied in lead zirconate titanate (PZT) thin films. The films were fabricated on platinum electrodes and annealed by rapid thermal processing (RTP). The phases which formed and their location in the film were analyzed using glancing angle XRD and depth profiling was demonstrated. Grain size and structure, nucleation sites and surface morphology were determined with transmission electron microscop (TEM) and atomic force microscopy (AFM). The role of AFM in this type of transformation study was assessed.

The PZT films crystallized with a (100) orientation which was preferentially nucleated at the platinum/film interface. RTP at 650°C for 15 s was sufficient to complete the transformation. However, columnar grain growth and improvements in the ferroelectric properties were obtained with increased RTP time. A PZT film with RTP at 650°C for 1 min possessed a remanent polarization of 25 μC/cm2 and a dielectric constant of ε = 650.  相似文献   


13.
Nanocrystalline diamond/β-SiC composite films are synthesized by microwave plasma chemical vapor deposition using a gas mixture of H2, CH4, and tetramethylsilane (Si(CH3)4, TMS) in a single process step. Structural and compositional analyses revealed that the films consist of a mixture of diamond and β-SiC nanocrystalline phases in a desired volume fraction combinatorial form. Transmission electron microscopy analysis confirmed the X-ray diffraction results and showed that the major diffraction lines corresponded to a two-component nanocrystalline composite film. Infrared spectroscopic analysis showed that the content of β-SiC in the films can be increased by increasing the TMS concentration. This correlated very well with electron probe microanalysis and Rutherford backscattering analysis that showed an almost linear correspondence of β-SiC content in the films with the TMS concentration in the gas phase. The phase purity of the diamond crystallites decreased with increase in the β-SiC content in the films, as shown by micro Raman scattering studies. Smooth surface morphologies are measured for these films by using atomic force microscopy; the root mean square roughness was 12 ± 1 nm. The β-SiC volume fraction (vol. %) was identified as an important compositional factor to determine any mechanical and frictional properties of these films. PACS 68.55.-a; 68.55.Nq; 68.60.-p  相似文献   

14.
The effectiveness of oxygen (O2), nitrous oxide (N2O), and nitrogen dioxide (NO2) as oxidizing agents during in-situ growth of YBa2Cu3O7−δ (YBCO) films on (100) SrTiO3 substrates by pulsed laser deposition has been studied as a function of deposition temperature (700–800°C), and laser wavelength (193,248 and 355 nm), for a wide range of oxidizer gas pressure (0.1–200 mTorr). In general, the superconducting transition temperature of the films has been found to increase with increasing oxidant pressure, with zero-resistance temperature ≈90 K only obtained in films prepared in a relatively high pressure (150–200 mTorr) of oxidizer gas. At lower pressures, the transition temperature while being depressed is quite sensitive to the nature of the oxidant, the laser wavelength and the deposition temperature. Nevertheless, independent of the oxygen source or other growth parameters, an almost linear decrease in transition temperature with a corresponding increase in the c-axis lattice parameter has been observed for all the film. YBCO films have also been deposited in a low pressure background (≤ 1 mTorr) using a combination of atomic oxygen and pulsed molecular oxygen. The results are discussed in terms of the oxygen requirement for kinetic and thermodynamic stability of YBCO during growth of the film by pulsed laser deposition.  相似文献   

15.
The reactions of Si(100) and Si(111) surfaces at 700 °C (973 K) with ethylene (C2H4) at a pressure of 1.3×10−4 Pa for various periods of time were studied by using Auger electron spectroscopy (AES) and electron energy loss spectroscopy (ELS). For a C2H4 exposure level, the amount of C on the (111) surface was larger than that on the (100) surface. The formation of β-SiC grain was deduced by comparing the CKLL spectra from the sample subjected to various C2H4 exposure levels, and from β-SiC crystal.  相似文献   

16.
The resistive transitions of ultrathin YBa2Cu3O7−δ (YBCO) films with thicknesses 75 and 200 Å were studied under magnetic fields. For the 75 Å film under a 5 T parallel magnetic field (Hbab-plane), no broadening of the resistive transition occurred. In the perpendicular magnetic field (H ab-plane), the broadening of the resistive transition of the 75 Å film is larger than that of the 200 Å thick film. The flux activation energy U was found to be linearly dependent on the temperature and logarithmically dependent on the magnetic field for both 75 and 200 Å films, which means the two samples have a two-dimensional vortex lattice. Furthermore, the activation energy U also increased with the film thickness, indicating that the magnetic correlation length in the c-axis direction lc is larger than the 200 Å for bulk YBCO.  相似文献   

17.
The electronic structure and surface properties of γ-Al2O3 thin films are studied. We have prepared the films by oxydizing Al foils under controlled conditions and we characterize the γ-Al2O3 samples by means of XPS, UPS, and TEM and found no charging. Pronounced effects in temperature-dependent changes of the work function are observed which result from changes in band bending and electron affinities by reorganisation and migration of defects. Thereby the ability of these systems for prototype studies in catalysis and analysis of defects is demonstrated.  相似文献   

18.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

19.
We describe a method of high temperature annealing in which the control of oxygen partial pressure is the principal experimental determinant in obtaining highly c oriented thin films of YBa2Cu3O7 − δ on YSZ. Film crystallization, morphology and substrate interactions are discussed with detailed reference to the equilibria existing in the YBCO system. A model based on the melt-assisted crystallization of the precursor tetragonal compound, beginning at the free film surface, is used to explain the observed c texturing. Excellent Josephson coupling between grains of YBa2Cu3O7 − δ in our films is related to melt-assisted growth. We discuss the adverse effects of annealing in pure oxygen at high temperatures.  相似文献   

20.
Optical non destructive evaluation methods, using lasers as the object illumination source, include holographic interferometry. It is widely used to measure stress, strain, and vibration in engineering structures. Double exposure holographic interferometry (DEHI) technique is used to determine thickness and stress of electrodeposited bismuth trisulphide (Bi2S3) thin films for various deposition times. The same is tested for other concentration of the precursors. It is observed that, increase in deposition time, increases thickness of thin film but decreases stress to the substrate. The structural, optical and surface wettability properties of the as deposited films have been studied using X-ray diffraction (XRD), optical absorption and contact angle measurement, respectively. The X-ray diffraction study reveals that the films are polycrystalline with orthorhombic crystal structure. Optical absorption study shows the presence of direct transition with band bap 1.78 eV. The water contact angle measurement shows hydrophobic nature of Bi2S3 thin film surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号