首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zusammenfassung Die beiden Differentialgleichungssysteme vonKrischer undLykow werden miteinander verglichen. Dabei ergibt sich, daß die in der deutschen und russischen Literatur angewandten mathematischen Modelle der Trocknung von kapillarporösen Körpern praktisch übereinstimmen. Es werden die Transformationsgleichungen der dimensionslosen Kenngrößen angegeben, die die Beziehungen zwischen den beiden Systemen herstellen.
The differential equations ofKrischer andLuikow for unsteady internal heat and mass transfer in the porous medium are compared. It is shown, that the mathematical models for drying in the German and Russian literature are equivalent. The transform relations of the non-dimensional parameters between the two models are given.

Formelzeichen nach Krischer z laufende Koordinate in Strömungsrichtung in m - R kennzeichnende Abmessung des Körpers in m - t Zeit in h - Raumgewicht bei mittlerer Feuchtigkeit in kg/m3 - w Teilgewicht des Wassers in 1 m3 Trockengut in kg/m3 - wa Anfangsfeuchtigkeit in kg/m3 - D Dampfdichte in kg/m3 - L Luftvolumen je m3 Trocknungsgut in m3/m3 - Temperatur in °C - u Umgebungstemperatur in °C - a Anfangstemperatur in °C - r Verdampfungswärme in kcal/kg - q E Wärmeentwicklung in kcal/m3 h - c spezifische Wärmekapazität des Trockengutes in kcal/kg grd - Wärmeleitfähigkeit in kcal/m h grd - Feuchtigkeitsleitzahl des Trockengutes in m2/h - wirksame Diffusionszahl von Wasserdampf in Luft in m2/h - Diffusionswiderstandszahl des Trockengutes — - Konstante — - Konstante in kg/m3 grd Formelzeichen nach Lykow X=r/R dimensionslose Koordinate des Körpers;r laufende Koordinate in m;R kennzeichnende Abmessung in m; - Fo=a/R 2 Fourier-Zahl;a Temperaturleitzahl in m2/h; Zeit in h - T(X, Fo)=t(r, )– 0/t dimensionslose Temperatur des Körpers im Punkt mit KoordinateX für den ZeitpunktFo;t(r, ) Temperatur in °C; 0 mittlere Anfangstemperatur in °C; t ein vorher angenommener Temperaturunterschied in grd - (X, Fo)= 0u(r, )/u dimensionsloses Potential des Stoffübergangs im Punkt mit KoordinateX für den ZeitpunktFo;u(r, ) Feuchtigkeitsgehalt des Trockengutes in kg/kg; 0 mittlerer Anfangsfeuchtigkeitsgehalt in kg/kg; u ein vorher angenommener Unterschied des Feuchtigkeitsgehalts in kg/kg - Ko= u/c t Kosowitsch-Zahl; Verdampfungswärme in kcal/kg;c spezifische Wärmekapazität des Trockengutes in kcal/kg - Ko*=Ko modifizierte Kosowitsch Zhal; Kenngröße der Zustandsänderung - Pn= t/u Posnowsche Zahl;=a T m /a m Thermogradientkoeffizient in 1/grd;a T m thermische Stoffübergangszahl (charakterisiert den Stoffstrom unter der Einwirkung von Temperaturgradienten) in m2/h grd;a m Stoffübergangszahl (charakterisiert den Stoffstrom unter der Einwirkung von Feuchtigkeitsgradienten) in m2/h - Lu=a m/a Lykowsche Zahl - Ki q=q q ()·R/ q t dimensionsloser Wärmestrom (Kirpitschew-Zahl);q q() Wärmestrom durch die Körperoberfläche in kcal/m2; q Wärmeleitfähigkeit in kcal/m2 h grd - Ki m=q m ()·R/a m 0 u dimensionsloser Stoffstrom;q m() Stoffstrom durch die Körperoberfläche in kg/m2 h; 0 Wichte des Trockengutes in kg/m3  相似文献   

2.
Zusammenfassung Die längsangeströmte dicke Platte und der längsüberströmte Kreiszylinder mit Strömungs-ablösung und Wiederanlegen der Strömung lassen sich generell in drei Abschnitte untergliedern: Profilbereich, Bereich abgelöster Strömung und anschließende Plattengrenzschicht [1].Besondere Bedeutung kommt dem Ort maximalen Stoffübergangs beim Wiederanlegen der Strömung als Startlinie einer neuen Grenzschicht zu. Die Vorteile der eingesetzten remissionsfotometrischen StoffÜbergangs meß-methode gestatten erstmals eine geschlossene Aussage zum Stoffübergangsmaximum beim Wiederanlegen von Strömungen und erweiterte Aussagen über die Erfassung des minimalen Stoffübergangs im Bereich abgelöster Strömung. Wie ein Literaturvergleich zeigt, wird auch am quer angeströmten Kreiszylinder der maximale Stoffübergang nach Ablöseblasen mit der an dicken Platten gewonnenen Beziehung beschrieben, wenn analoge Bezugsgrößen eingeführt werden.Für eine Berechnung des örtlichen und mittleren Stoffübergangs über die gesamte Platten- bzw. Zylinder-länge ist es zweckmäßig, die genannten drei Abschnitte getrennt zu behandeln. Die Verteilung des Stoffübergangs im Bereich abgelöster Strömung wird in bezogener, dimensionsloser Form unter Einbeziehung der wesentlichen Einflußgrößen Anströmprofil, ResB -Zahl und Turbulenzintensität dargestellt sowie durch Berech-nungsgleichungen für die charakteristischen Strömungsformen Ablöseblase und Querwirbelablösung erfaßt.Für den Stoffübergang in der Plattengrenzschicht ab dem Wiederanlegen der Strömung ergibt sich eine Beziehung analog zu jener der turbulenten Plattengrenzschicht, wenn in einem Erweiterungsterm zusätzlich die Strömungsform der Strömungsablösung, die ResB -Zahl sowie die Höhe des Stoffübergangs im Maximum berücksichtigt werden.
Determination of the local and average mass transfer on thick plates in parallel flow with flow separation and reattachement
The thick flat plate and the circular cylinder in parallel flow with flow separation and reattachement may generally be subdivided into three main sections: the nose section, the section of separated flow and the following section of boundary layer of the flat plate [1]. The maximum mass transfer at the reattachement is specially important as the starting line of a new boundary layer. For the first time the advantages of the applied remission fotometrical measuring technique for the determination of local mass transfer rates allow a complete interpretation of the maximum mass transfer at the reattachement of the flow as well as further informations about the minimum mass transfer in the section of separated flow. As a literature review shows, also for the cylinder in cross flow the maximum mass and heat transfer behind separation bubbles can be determined with the equation valid for thick plates by using analogous parameters.For a computation of the local and average mass transfer along the whole length of the plate or of the cylinder it is reasonable to discuss the mass transfer in the three forementioned section apart. The distribution of the mass transfer within the section of separated flow is presented in a related, dimensionless form. The main parameters plate nose, ResB -number and turbulence intensity as well as the characteristic main forms of the flow separation bubble and vortex shedding with reattachement are taken into account.The mass transfer in the boundary layer downstream of the reattachement can be computed in analogy to that of the turbulent boundary layer, but an additional term considers the form of the flow separation, the ResB -number and the value of the maximum mass transfer.

Bezeichnungen A Koeffizient der Gl. (17) - a Temperaturleitkoeffizient - Cmin Koeffizient der Gl. (6) - DA Diffusionskoeffizient von Ammoniak in Luft - d Zylinderdurchmesser - Nu1max 1max· d/, Nußelt-Zahl - m Exponent der Reynolds-Zahl - Pr /a, Prandtl-Zahl - Red U· d/, Reynolds-Zahl - Res U · s/, Reynolds-Zahl - Rex U· x/, Reynolds-Zahl - Re* U· x*/, Reynolds-Zahl - Sc /DA, Schmidt-Zahl - Shd A·d/DA, Sherwood-Zahl - Shs A· s/DA, Sherwood-Zahl - Shx A· x/DA, Sherwood-Zahl - Sh* A· x*/DA, Sherwood-Zahl - s Plattendicke einschließlich Trägerfolie - Tu , Turbulenzintensität - UB Hautpstromgeschwindigkeit im verengten Kanalquerschnitt - U H auptstromgeschwindigkeit im freien Kanalquerschnitt - mittlere turbulente Geschwindigkeitsschwankung in x-Richtung - x Koordinate in Strömungsrichtung, tangential zur Oberfläche - xP Profillänge des Anströmprofils - x Koordinate in x-Richtung ab Profilende - xmax Entfernung von Plattenbeginn bis zum Stoffübergangsmaximum beim Wiederanlegen der Strömung - xmin Entfernung von Plattenbeginn bis zum Stoffübergangsminimum im Bereich abgelöster Strömung - x* Koordinate in x-Richtung ab Wiederanlegen der Strömung - Wärmeübergangskoeffizient - 1max Wärmeübergangskoeffizient an der Stelle des Zwischenmaximum am querangeströmten Kreiszylinder - A Stoffübergangskoeffizient (Ammoniak) - Amax maximaler Stoffübergangskoeffizient an der Stelle xmax - Amin minimaler Stoffübergangskoeffizient an der Stelle xmin. - Wärmeleitkoeffizient - v kinematische Zähigkeit gekürzt vorgetragen auf der Sitzung des GVC-Fachausschusses Wärme- und Stoffübertragung am 5./6. April 1976 in Schliersee.Herrn Senator Gustav Kunz zum 65. Geburtstag am 23. November 1977 gewidmet.  相似文献   

3.
An analytical solution is obtained for the stationary temperature profile in a polymeric melt flowing into a cold cavity, which also takes into account viscous heating effects. The solution is valid for the injection stage of the molding process. Although the analytical solution is only possible after making several (at first sight) rather stringent assumptions, the calculated temperature field turns out to give a fair agreement with a numerical, more realistic approach. Approximate functions were derived for both the dissipation-independent and the dissipation-dependent parts which greatly facilitate the temperature calculations. In particular, a closed-form expression is derived for the position where the maximum temperature occurs and for the thickness of the solidified layer.The expression for the temperature field is a special case of the solution of the diffusion equation with variable coefficients and a source term.Nomenclature a thermal diffusivity [m2/s] - c specific heat [J/kg K] - D channel half-height [m] - L channel length [m] - m 1/ - P pressure [Pa] - T temperature [°C] - T W wall temperature [°C] - T i injection temperature [°C] - T A Br independent part of T - T B Br dependent part of T - T core asymptotic temperature - v z() axial velocity [m/s] - W channel width [m] - x cross-channel direction [m] - z axial coordinate [m] - (x) gamma function - (a, x) incomplete gamma function - M(a, b, x) Kummer function - small parameter - () temperature function - thermal conductivity [W/mK] - viscosity [Pa · s] - 0 consistency index - power-law exponent - density [kg/m] - similarity variable Dimensionless variables Br Brinkman number - Gz Graetz number -   相似文献   

4.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

5.
A function correlating the relative viscosity of a suspension of solid particles in liquids to their concentration is derived here theoretically using only general thermodynamic ideas, with out any consideration of microscopic hydrodynamic models. This function ( r = exp (1/2B * C 2)) has a great advantage over the many different functions proposed in literature, for it depends on a single parameter,B *, and is therefore concise. To test the validity of this function, a least-squares regression analysis was undertaken of available data on the viscosity and concentration of suspensions of coal particles in fuel oil, which promise to be a useful alternative to fuel oil in the near future. The proposed function was found to accurately describe the concentration-dependent behaviour of the relative viscosity of these suspensions. Furthermore, an attempt was made to obtain information about the factors affecting the value ofB *, however the results were only qualitative because of, among other things, the inaccuracy of the viscosity measurements in such highly viscous fluids. shear viscosity of the suspension - 0 shear viscosity of the Newtonian suspending medium - r = /0 relative viscosity - solid volume concentration - c solid weight concentration - m maximum attainable volume concentration of solids - solid volume concentration at which the relative viscosity of the suspension becomes infinite - c m maximum attainable solid weight concentration - s density of the solid phase - l density of the liquid phase - m density of the suspension - k n coefficients of theø-power series expansion of r - { j } sets of parameters specifying the thermodynamic state of the solid phase of a suspension - T absolute temperature (K) - f (c, T, j) formal expression for the relative variation of the viscosity with concentration = [1 / (/c)] T,j - d median size of the granulometric distribution - B plastic or Bingham viscosity - K consistency factor - n flow index - g ([c m c],T, j ) function including an asymptotic divergence asc tends toc m , formally describing the concentration dependent behaviour of the shear viscosity of a suspension - A (T, j) regression analysis parameters - B (T, j) regression analysis parameters - B * (T, j ) regression analysis parameters  相似文献   

6.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

7.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

8.
Experimental investigation and analysis of heat transfer process between a gas-liquid spray flow and the row of smooth cylinders placed in the surface perpendicular to the flow has been performed. Among others, there was taken into account in the analysis the phenomenon of droplets bouncing and omitting the cylinder as well as the phenomenon of the evaporation process from the liquid film surface.In the experiments test cylinders were used, which were placed between two other cylinders standing in the row.From the experiments and the analysis the conclusion can be drawn that the heat transfer coefficients values for a row of the cylinders are higher than for a single cylinder placed in the gasliquid spray flow.
Wärmeübergang an eine senkrecht anf eine Zylinderreihe auftreffende Gas-Flüssigkeits-Sprüh-Strömung
Zusammenfassung Es wurden Messungen und theoretische Analysen des Wärmeübergangs zwischen einer Gas-FlüssigkeitsSprüh-Strömung und den glatten Oberflächen einer Zylinderreihe durchgeführt, die senkrecht zum Sprühstrahl angeordnet waren. Dabei wurde in der Analyse unter anderem das Phänomen betrachtet, daß die Tropfen die Zylinderwand treffen und verfehlen können und daß sich ein Verdampfungsprozeß aus dem flüssigen Film an der Zylinderoberfläche einstellt.Gemessen wurde an einem zwischen zwei Randzylindern befindlichen Zylinder.Die Experimente und die Analyse gestatten die Schlußfolgerung, daß der Wärmeübergangskoeffizient für eine Zylinderreihe höher ist als für einen einzelnen Zylinder in der Sprühströmung.

Nomenclature a distance between axes of cylinders, m - c l specific heat capacity of liquid, J/kg K - c g specific heat capacity of gas, J/kg K - D cylinder diameter, m - g l mass velocity of liquid, kg/m2s - ¯k average volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - k() local volume ratio of liquid entering film to amount of liquid directed at the cylinder in gas-liquid spray flow, dimensionless - L specific latent heat of vaporisation, J/kg - m mass fraction of water in gas-liquid spray flow, dimensionless - M constant in Eq. (9) - p pressure, Pa - p g statical pressure of gas, Pa - p w pressure of gas on the cylinder surface, Pa - p external pressure on the liquid film surface, Pa - r cylindrical coordinate, m - R radius of cylinder, m - T temperature, K, °C - T l, tl liquid temperature in the gas-liquid spray, K, °C - T w,tw temperature of cylinder surface, K, °C - T temperature of gas-liquid film interface, K - U liquid film velocity, m/s - w gas velocity on cylinder surface, m/s - w g gas velocity in free stream, m/s - W l liquid vapour mass ratio in free stream, dimensionless - W liquid vapour mass ratio at the edge of a liquid film, dimensionless - x coordinate, m - y coordinate, m - z complex variable, dimensionless - average heat transfer coefficient, W/m2K - local heat transfer coefficient, W/m2 K - average heat transfer coefficient between cylinder surface and gas, W/m2 K - g, local heat transfer coefficient between cylinder surface and gas, W/m2 K - mass transfer coefficient, kg/m2s - liquid film thickness, m - lg dynamic diffusion coefficient of liquid vapour in gas, kg/m s - pressure distribution function on a cylinder surface - function defined by Eq. (3) - l liquid dynamic viscosity, kg/m s - g gas dynamic viscosity, kg/m s - cylindrical coordinate, rad, deg - l thermal conductivity of liquid, W/m K - g thermal conductivity of gas, W/m K - mass transfer driving force, dimensionless - l density of liquid, kg/m3 - g density of gas, kg/m3 - w shear stress on the cylinder surface, N/m2 - w shear stress exerted by gas at the liquid film surface, N/m2 - air relative humidity, dimensionless - T -T w - w =T wTl Dimensionless parameters I= enhancement factor of heat transfer - m *=M l/Mg molar mass of liquid to the molar mass of gas ratio - Nu g= D/ g gas Nusselt number - Pr g=c g g/g gas Prandtl number - Pr l=clll liquid Prandtl number - ¯r=(r–R)/ dimensionless coordinate - Re g=wgD g/g gas Reynolds number - Re g,max=wg,max D g/g gas Reynolds number calculated for the maximal gas velocity between the cylinders - Sc=m * g/l–g Schmidt number =/R dimensionless film thickness  相似文献   

9.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

10.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

11.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

12.
Linear stability theory is used to investigate the onset of longitudinal vortices in laminar boundary layers along horizontal semi-infinite flat plates heated or cooled isothermally from below by considering the density inversion effect for water using a cubic temperature-density relationship. The analysis employs non-parallel flow model incorporating the variation of the basic flow and temperature fields with the streamwise coordinate as well as the transverse velocity component in the disturbance equations. Numerical results for the critical Grashof number Gr L * =Gr X * /Re X< Emphasis>/3/2 are presented for thermal conditions corresponding to –0.5 1–2.0 and –0.8 21.2.Nomenclature a wavenumber, 2/ - D operator, d/d - F (f–f)/2 - f dimensionless stream function - g gravitational acceleration - G eigenvalue, Gr L/ReL - Gr L Grashof number based on L - Gr X Grashof number based on X - L characteristic length, (X/U)1/2 - M number of divisions in y direction - P pressure - Pr Prandtl number, / - p dimensionless pressure, P/( 2 /Re L) - Re L, ReX Reynolds numbers, (U L/)=Re X< 1/2 and (U), respectively - T temperature - U, V, W velocity components in X, Y, Z directions - u, v, w dimensionless perturbation velocities, (U, V, W)/U - X, Y, Z rectangular coordinates - x, y, z dimensionless coordinates, (X, Y, Z)/L - thermal diffusivity - coefficient of thermal expansion - 1, 2 temperature coefficients for density-temperature relationship - similarity variable, Y/L=y - dimensionless temperature disturbance, /T - dimensionless wavelength of vortex rolls, 2/a - 1, 2 thermal parameters defined by equation (12) - kinematic viscosity - density - dimensionless basic temperature, (T b T )/T - –1 - T temperature difference, (T wT ) - * critical value or dimensionless disturbance amplitude - prime, disturbance quantity or differentiation with respect to - b basic flow quantity - max value at a density maximum - w value at wall - free stream condition  相似文献   

13.
Based on the complex viscosity model various steady-state and transient material functions have been completed. The model is investigated in terms of a corotational frame reference. Also, BKZ-type integral constitutive equations have been studied. Some relations between material functions have been derived. C –1 Finger tensor - F[], (F –1[]) Fourier (inverse) transform - rate of deformation tensor in corotating frame - h(I, II) Wagner's damping function - J (x) Bessel function - m parameter inh (I, II) - m(s) memory function - m k, nk integers (powers in complex viscosity model) - P principal value of the integral - parameter in the complex viscosity model - rate of deformation tensor - shear rates - [], [] incomplete gamma function - (a) gamma function - steady-shear viscosity - * complex viscosity - , real and imaginary parts of * - 0 zero shear viscosity - +, 1 + stress growth functions - , 1 - stress relaxation functions - (s) relaxation modulus - 1(s) primary normal-stress coefficient - ø(a, b; z) degenerate hypergeometric function - 1, 2 time constants (parameters of *) - frequency - extra stress tensor  相似文献   

14.
For many solid materials the stress relaxation process obeys the universal relationF = – (d/d lnt)max = (0.1 ± 0.01) ( 0 i ), regardless of the structure of the material. Here denotes the stress,t the time, 0 the initial stress of the experiment and i the internal stress. A cooperative model accounting for the similarity in relaxation behaviour between different materials was developed earlier. Since this model has a spectral character, the concepts of linear viscoelasticity are used here to evaluate the corresponding prediction of the dynamic mechanical properties, i.e. the frequency dependence of the storageE () and lossE () moduli. Useful numerical approximations ofE () andE () are also evaluated. It is noted that the universal relation in stress relaxation had a counterpart in the frequency dependence ofE (). The theoretical prediction of the loss factor for high-density polyethylene is compared with experimental results. The agreement is good.  相似文献   

15.
Zusammenfassung Der Einfluß der Rotation auf das Temperaturprofil und die Wärmeübergangszahl einer turbulenten Rohrströmung im Bereich des thermischen Einlaufs wird theoretisch untersucht und mit Meßwerten verglichen. Es wird angenommen, daß das Geschwindigkeitsprofil voll ausgebildet ist. Die Rotation hat aufgrund der radial ansteigenden Zentrifugalkräfte einen ausgeprägten Einfluß auf die Unterdrückung der turbulenten Bewegung. Dadurch verschlechtert sich die Wärmeübertragung mit steigender Rotations-Reynoldszahl und die thermische Einlauflänge nimmt beträchtlich zu.
Heat transfer in an axially rotating pipe in the thermal entrance region. Part 1: Effect of rotation on turbulent pipe flow
The effects of rotation on the temperature distribution and the heat transfer to a fluid flowing inside a tube are examined by analysis in the thermal entrance region. The theoretical results are compared with experimental findings. The flow is assumed to have a fully developed velocity profile. Rotation was found to have a very marked influence on the suppression of the turbulent motion because of radially growing centrifugal forces. Therefore, a remarkable decrease in heat transfer with increasing rotational Reynolds number can be observed. The thermal entrance length increases remarkably with growing rotational Reynolds number.

Formelzeichen a Temperaturleitzahl - C n , ,C 1,C 3 Konstanten - c p spezifische Wärme bei konstantem Druck - D Rohrdurchmesser - E Funktion nach Gl. (30) - H n Eigenfunktionen - l hydrodynamischer Mischungsweg - l q thermischer Mischungsweg - Massenstrom - N=Re /Re Reynoldszahlenverhältnis - Nu Nusseltzahl - Nu Nusseltzahl für die thermisch voll ausgebildete Strömung - Pr Prandtlzahl - Pr t turbulente Prandtlzahl - Wärmestromdichte - Re * Schubspannungsreynoldszahl - R n Eigenfunktionen - Durchfluß-Reynoldszahl - Re v =D/ Rotations-Reynoldszahl - Ri Richardsonzahl - R Rohrradius - r Koordinate in radialer Richtung - dimensionslose Koordinate in radialer Richtung - T Temperatur - T Temperaturschwankung - T b bulk temperature - mittlere Axialgeschwindigkeit - v Geschwindigkeit - v Geschwindigkeitsschwankung - turbulenter Wärmestrom - dimensionsloser Wandabstand - =1/6 Konstante - Integrationsvariable - Integrationsvariable - , 1, 2, dimensionslose Temperaturen - Wärmeleitzahl - n Eigenwerte - kinematische Viskosität - Dichte - tangentiale Koordinate - , Hilfsfunktionen Indizes m in der Rohrmitte - r radial - w an der Rohrwand - z axial - 0 am Rohreintritt - 0 ohne Rotation - tangential  相似文献   

16.
The mixed convection flow in a vertical duct is analysed under the assumption that , the ratio of the duct width to the length over which the wall is heated, is small. It is assumed that a fully developed Poiseuille flow has already been set up in the duct before heat from the wall causes this to be changed by the action of the buoyancy forces, as measured by a buoyancy parameter . An analytical solution is derived for the case when the Reynolds numberRe, based on the duct width, is of 0 (1). This is extended to the case whenRe is 0 (–1) by numerical integrations of the governing equations for a range of values of representing both aiding and opposing flows. The limiting cases, || 1 andR=Re of 0 (1), andR and both large, with of 0 (R 1/3) are considered further. Finally, the free convection limit, large with R of 0 (1), is discussed.
Mischkonvektion in engen senkrechten Rohren
Zusammenfassung Mischkonvektion in einem senkrechten Rohr wird unter der Voraussetzung untersucht, daß das Verhältnis der Rohrbreite zur Länge, über welche die Wand beheizt wird, klein ist. Es wird angenommen, daß sich bereits eine voll entwickelte Poiseuille-Strömung in dem Rohr eingestellt hat, bevor Antriebskräfte, gemessen mit dem Auftriebsparameter , aufgrund der Wandbeheizung die Strömung verändern. Es wird eine analytische Lösung für den Fall erhalten, daß die mit der Rohrbreite als charakteristische Länge gebildete Reynolds-ZahlRe konstant ist. Dies wird mittels einer numerischen Integration der wichtigsten Gleichungen auf den FallRe =f (–1) sowohl für Gleich- als auch für Gegenstrom ausgedehnt. Weiterhin werden die beiden Grenzfälle betrachtet, wenn || 1 undR=Re konstant ist, sowieR und beide groß mit proportionalR 1/3. Schließlich wird der Grenzfall der freien Konvektion, großes mit konstantem R, diskutiert.

Nomenclature g acceleration due to gravity - Gr Grashof number - G modified Grashof number - h duct width - l length of the heated section of the duct wall - p pressure - Pr Prandtl number - Q flow rate through the duct - Q 0 heat transfer on the wally=0 - Q 1 heat transfer on the wally=1 - Re Reynolds number - R modified Reynolds number - T temperature of the fluid - T 0 ambient temperature - T applied temperature difference - u, velocity component in thex-direction - v, velocity component in they-direction - x, co-ordinate measuring distance along the duct - y, co-ordinate measuring distance across the duct - buoyancy parameter - 0 modified buoyancy parameter, 0=R –1/3 - coefficient of thermal expansion - ratio of duct width to heated length, =h/l - (non-dimensional) temperature - w applied temperature on the wally=0 - kinematic viscosity - density of the fluid - 0 shear stress on the wally=0 - 1 shear stress on the wally=1 - stream function  相似文献   

17.
Mathematical results are derived for the schlieren and shadowgraph contrast variation due to the refraction of light rays passing through two-dimensional compressible vortices with viscous cores. Both standard and small-disturbance solutions are obtained. It is shown that schlieren and shadowgraph produce substantially different contrast profiles. Further, the shadowgraph contrast variation is shown to be very sensitive to the vortex velocity profile and is also dependent on the location of the peak peripheral velocity (viscous core radius). The computed results are compared to actual contrast measurements made for rotor tip vortices using the shadowgraph flow visualization technique. The work helps to clarify the relationships between the observed contrast and the structure of vortical structures in density gradient based flow visualization experiments.Nomenclature a Unobstructed height of schlieren light source in cutoff plane, m - c Blade chord, m - f Focal length of schlieren focusing mirror, m - C T Rotor thrust coefficient, T/( 2 R 4) - I Image screen illumination, Lm/m 2 - l Distance from vortex to shadowgraph screen, m - n b Number of blades - p Pressure,N/m 2 - p Ambient pressure, N/m 2 - r, , z Cylindrical coordinate system - r c Vortex core radius, m - Non-dimensional radial coordinate, (r/r c ) - R Rotor radius, m - Tangential velocity, m/s - Specific heat ratio of air - Circulation (strength of vortex), m 2/s - Non-dimensional quantity, 2 82p r c 2 - Refractive index of fluid medium - 0 Refractive index of fluid medium at reference conditions - Gladstone-Dale constant, m 3/kg - Density, kg/m 3 - Density at ambient conditions, kg/m 3 - Non-dimensional density, (/ ) - Rotor solidity, (n b c/ R) - Rotor rotational frequency, rad/s  相似文献   

18.
Laminar mixed convection over a horizontal plate with uniform wall temperature or uniform wall heat flux is analyzed by introducing proper buoyancy parameters and transformation variables for fluids of any Prandtl number between 0.001 and 10,000. Both cases of buoyancy assisting and opposing flow conditions are investigated. For the buoyancy-assisting case, the obtained numerical results are very accurate over the entire range of mixed convection intensity from pure forced convection limit to pure free convection limit. For the buoyancy-opposing case, solutions are obtained from the forced convection limit to the point of breakdown.
Mischkonvektion an einer horizontalen Platte für Fluide mit beliebiger Prandtl-Zahl
Zusammenfassung Es wurde laminare Mischkonvektion an einer horizontalen Platte mit einheitlicher Wandtemperatur oder einheitlicher Wandwärmestromdichte bei Einführung zweckmäßiger Auftriebsparameter und Transformationsvariablen für Fluide mit beliebiger Prandtl-Zahl zwischen 0,001 und 10 000 untersucht. Es wurden die Fälle der Strömung entgegen und in Richtung der Auftriebskraft untersucht. Für den Fall der Strömung in Richtung der Auftriebskraft wurden sehr genaue numerische Ergebnisse für den gesamten Bereich der gemischten Konvektion von rein erzwungener Konvektion bis zu rein freier Konvektion erhalten. Für den Fall der Strömung entgegen der Auftriebsrichtung wurden Lösungen für erzwungene Konvektion bis zum Umkehrpunkt erhalten.

Nomenclature C f local friction coefficient - f reduced stream function - g gravitational acceleration - Gr local Grashof number for UWT,g (T w T )x 3/ 2 - Gr* local Grashof number for UHF,g q w x 4/k 2 - m =10 for UWT; and =6 for UHF - n =5 for UWT; and =3 for UHF - Nu local Nusselt number - p pressure - Pr Prandtl number,/ - q w wall heat flux - Ra local Rayleigh number for UWT,Gr Pr - Ra* local Rayleigh number for UHF,Gr*Pr - Re local Reynolds number,u x/ - T fluid temperature - T w wall temperature - T free-stream temperature - u velocity component inx-direction - u free-stream velocity - v velocity component iny-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - =0 for UWT; and =1 for UHF - buoyancy parameter, =( Ra)1/5/( Re)1/2 for UWT; and =( Ra*)1/6/( Re)1/2 for UHF - pseudo-similarity variable, (y/x) - dimensionless temperature, =(TT )/(T w T ) for UWT; and =(TT )/(q w x/k) for UHF - =[( Re)1/2+( Ra)1/5] for UWT; and =[( Re)1/2+( Ra*)1/6] for UHF - dynamic viscosity - kinematic viscosity - /(1+) - dimensionless pressure - density - Pr/(1+Pr) - w wall shear stress,(u/y) y=0 - stream function - Pr/(1+Pr)1/3  相似文献   

19.
The effect of an applied electrical potential on heat transfer to a tube immersed in a highly ionized flow of atmospheric pressure Argon plasma is experimentally and analytically determined. Bare copper tubes as well as pyrex coated tubes are utilized and the measured heat fluxes to the locally floating copper surfaces are found to be identical to those of pyrex coated surfaces. This effect is due to unimpeded recombination of electrons with ions on the insulating surface. Comparisons of experiment with analysis indicate that ions diffusing through the thermal and concentration boundary layers surrounding the tube recombine only at the wall (i. e., frozen chemistry prevails in the boundary layers).
Zusammenfassung Diese Arbeit befaßt sich sowohl theoretisch als auch experimentell mit dem Einfluß eines äußeren elektrischen Feldes auf den Wärmeübergang zu einer Sonde (Röhrchen), die sich in einem hochionisierten atmosphärischen Argon-Plasmastrom befindet. Es werden wassergekühlte, blanke Kupferröhrchen als auch solche, die mit einer dünnen Pyrexglasschicht überzogen sind, als Sonden benutzt. Messungen zeigen denselben Wärmestrom für beide Sondentypen solange die blanke Sonde lokal auf dem Potential einer stromlosen Sonde gehalten wird. Dieses Ergebnis wird auf die ungehinderte Rekombination von Elektronen mit Ionen auf der isolierenden Oberfläche zurückgeführt. Vergleiche zwischen Experiment und Theorie zeigen, daß die durch die thermische und Konzentrationsgrenzschicht diffundierenden Ionen nur auf der Sondenoberfläche rekombinieren, d. h. die Grenzschicht ist chemisch eingefroren.

Nomenclature e charge of an electron - I electrical current - j electrical current density - jis ion saturation current density of the probe surface - je electron current density at the probe surface - k Boltzmann constant - K thermal conductivity of plasma - Ka thermal conductivity of atoms in plasma - La Lewis Number (ratio of ambipolar diffusion coefficient to the thermal diffusion of atoms) - mi mass of ion - me mass of electron - ne number density of electrons - q actual heat flux - q0 effective heat flux - Q heat flow to the tube - r radial position - Te temperature of electrons - Tes temperature of electrons at sheath edge - Tw wall temperature - U work function of surface - V electrical potential of wall - Vf wall floating potential - Vm potential of wall for minimum heat flux - Vi ionization potential - Vi, ve ion and electron average thermal velocities, respectively - wi ion drift velocity - X off axis position - degree of ionization - Q heat flow at potential V minus the heat flow at floating potential - q the Abel inversion of Q - e electron mean free path - De Debye length - 0 permittivity of free space Support of this work by the National Science Foundation under Grant GK 15924 is gratefully acknowledged.  相似文献   

20.
Summary A non-linear viscoelastic model has been used to interpret transient flow birefringence in changing shear flow for a polymer melt. It is shown how the new model is consistent with the basic hypothesis of the linear stress-optical law. Stress growth in shear flow and relaxation after different amounts of shearing are compared with the predictions of the non-linear model. A good agreement between experimental data and theoretical predictions is found.
Zusammenfassung Ein nicht-lineares viskoelastisches Modell wird zur Interpretation der zeitabhängigen Strömungsdoppelbrechung verwendet, die bei wechselnder Scherung an einer Polymer-Schmelze zu beobachten ist. Es wird gezeigt, daß das neue Modell mit der Grundannahme eines linearen spannungsoptischen Gesetzes verträglich ist. Das Anwachsen der Spannung in der Scherströmung sowie ihre Relaxation in Abhängigkeit von der Größe der vorangegangenen Scherung wird mit den Voraussagen des nicht-linearen Modells verglichen. Es wird eine gute Übereinstimmung zwischen experimentellen Ergebnissen und theoretischen Voraussagen gefunden.

Notation a adjustable parameter - b frequency shift factor in eq. [13] - C stress-optical coefficient - D symmetric part of the velocity gradient - E i elastic energy associated with thei-th element - G() shear storage modulus - G() shear loss modulus - G i elastic modulus of thei-th element - H() relaxation time spectrum - n refractive index tensor - n I,n II principal refractive indices - P stress tensor - P 21 shear stress - P 11P 22 first normal stress difference - P 22P 33 second normal stress differences - S undetermined scalar function in eq. [1] - x i structural variable - shear rate - n flow birefringence in the shear flow plane - relaxation time - i relaxation time of thei-th element - extinction angle - angular frequency With 5 figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号