首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupling into the slow light mode in slab-type photonic crystal waveguides   总被引:1,自引:0,他引:1  
Coupling external light signals into a photonic crystal (PhC) waveguide becomes increasingly inefficient as the group velocity of the waveguiding mode slows down. We have systematically studied the efficiency of coupling in the slow light regime for samples with different truncations of the photonic lattice at the coupling interface between a strip waveguide and a PhC waveguide. An inverse power law dependence is found to best fit the experimental scaling of the coupling loss on the group index. Coupling efficiency is significantly improved up to group indices of 100 for a truncation of the lattice that favors the appearance of photonic surface states at the coupling interface in resonance with the slow light mode.  相似文献   

2.
In this Letter, the effects of material/structure parameters of photonic crystal(Ph C) parallel waveguides on the coupling length are investigated. The results show that, increasing the effective relative permittivity of the Ph C leads to a downward shift of the photonic bandgap and a variation of the coupling length. A compact Ph C 1.31/1.55 μm wavelength division multiplexer(WDM)/demultiplexer with simple structure is proposed,where the output power ratios are more than 24 d B. This WDM can multiplex/demultiplex other light waves efficiently.  相似文献   

3.
A review of the properties of silicon-based two-dimensional (2D) photonic crystals is given, essentially infinite 2D photonic crystals made from macroporous silicon and photonic crystal slabs based on silicon-on-insulator basis. We discuss the bulk photonic crystal properties with particular attention to the light cone and its impact on the band structure. The application for wave guiding is discussed for both material systems, and compared to classical waveguides based on index-guiding. Losses of resonant waveguide modes above the light line are discussed in detail.  相似文献   

4.
We consider the modes of coupled photonic crystal waveguides. We find that the fundamental modes of these structures can be either even or odd, in contrast with the behavior in coupled conventional waveguides, in which the fundamental mode is always even. We explain this finding using an asymptotic model that is valid for long wavelengths.  相似文献   

5.
We use two-dimensional simulations to study the design of tapers to provide efficient, low reflection coupling between a waveguide in a two-dimensional photonic crystal (PC) and free space. We find that, largely independent of the PC parameters, or of the length and width of the tapered region, the same type of concave, horn-shaped tapering profile is optimal for coupling from the waveguide into free space, and significantly out-performs the widely used linear taper. We also find that optimal tapers can radiate nearly Gaussian beams, and therefore they can also provide efficient coupling of Gaussian beams from free space into the PC waveguide. These properties are better exhibited by rod-type PCs with Ez polarization than by hole-type PCs with Hz polarization. This study of taper couplers exemplifies a design strategy for photonic circuits which optimizes positioning of the cylinders immediately surrounding the light path, and then builds the rest of the crystal structure around these cylinders.  相似文献   

6.
We propose a simple analytical theory for low-index core photonic bandgap optical waveguides based on an antiresonant reflecting guidance mechanism. We identify a new regime of guidance in which the spectral properties of these structures are largely determined by the thickness of the high-index layers and the refractive-index contrast and are not particularly sensitive to the period of the cladding layers. The attenuation properties are controlled by the number of high/low-index cladding layers. Numerical simulations with the beam propagation method confirm the predictions of the analytical model. We discuss the implications of the results for photonic bandgap fibers.  相似文献   

7.
Optical trirefringence in photonic crystal waveguides   总被引:5,自引:0,他引:5  
We demonstrate that 2D photonic crystals can possess optical trirefringence in which there are six field orientations for which linear incident light is not perturbed on reflection or transmission. Such a property is rigorously forbidden in homogeneous nonmagnetic dielectrics which can possess only optical birefringence. We experimentally demonstrate this phenomena in silicon-based mesostructures formed from photonic crystal waveguides embedded in a Fabry-Perot cavity. Multirefringence is controlled by the presence of submicron dielectric patterning and is well explained by an exact scattering matrix theory.  相似文献   

8.
We compare coupling between parallel waveguides within one-dimensional photonic crystals and coupling between conventional waveguides. We consider the situation in which coupling between the waveguides is minimized, so that light in the waveguides propagates essentially independently. Subject to this condition, we compare the minimum mutual distance between conventional planar waveguides and waveguides in one-dimensional photonic crystals. We find that the packing densities of the conventional and periodic structures are comparable.  相似文献   

9.
三平行光子晶体单模波导的耦合特性及其应用   总被引:17,自引:0,他引:17       下载免费PDF全文
将三光子晶体单模波导的相互耦合看成一个多模干涉系统.本征模的色散曲线相交或近于相交并出现简并模,简并模之间存在强烈耦合并导致模式的分布方式发生转变.多模干涉系统中,不同波长的光波能量在传输过程中由于相干而具有不同的空间输出行为,在近简并点处多模之间的相干解除,能流限制在原输入方向,不发生转移.三光子晶体单模光波导的这种特性可用来制作波分复用或解复用器件. 关键词: 光子晶体波导 简并模 多模干涉 波分复用或解复用  相似文献   

10.
We demonstrate that the dispersion of guided propagating modes in certain Photonic Crystal Waveguides (PCWGs) can be kept constant when the waveguide’s structure changes along the propagation direction. This suggests that the principle of constant group velocity matching may be utilized to improve impedance matching between different types of PCWGs while at the same time providing significant design flexibility. We illustrate this principle through the design of several efficient coupling structures between two different PCWGs via a local density of states and Fourier transform analysis of the associate electromagnetic fields. The couplers consist of heterostructures whose individual sections exhibit rather distinct structural parameters. Furthermore, we compare these structures to an adiabatic coupler.  相似文献   

11.
Zhen Hu  Ya Yan Lu 《Optics Communications》2011,284(12):2812-2816
For two-dimensional photonic crystals involving infinitely long dielectric rods or air-holes on square or triangular lattices, a number of high performance 60° and 90° waveguide bends are obtained by solving optimization problems involving the radii of a few rods or air-holes as the degrees of freedom. In particular, the proposed 60° bends significantly outperform previous designs that insert three or five identical air-holes in the bend. The optimization problems are solved using a recently developed method based on the so-called Dirichlet-to-Neumann (DtN) maps of the unit cells.  相似文献   

12.
We present here a tight-binding-like modelling of two-dimensional (2D) photonic crystals (PCs). Adopted from solid-state physics, the concept of generalized Wannier functions is used to construct a localized state basis that allows a parameter-free ab initio study of defects in PCs. We demonstrate here for a 2D triangular lattice of dielectric rods in air, the existence of this localized basis and the possibility to study large scale complex dielectric structures deviating from periodicity. Specific numerical simulations on a split waveguide embedded in this triangular lattice are performed, and they demonstrate the superiority of this method over plane wave based techniques.  相似文献   

13.
This work designs a type of line-defect photonic crystal waveguide (PCW) called hypoellipse PCW (HPCW) that considers two conflicting issues: group index and bandwidth. To do so, the recent multi objective framework called MoMIR is employed. A wide range of designs obtained demonstrates the advantage of considering group index and bandwidth simultaneously when designing HPCWs. Comparison of the proposed HPCW with the current best PCWs shows a nearly 7% improvement over the latter in terms of normalized delay-bandwidth product (NDBP). Analysis of the results reveals some of the physical rules about the structure of the HPCW. Finally, optical pulse propagation in obtained HPCWs and the process of designing an optical buffer by using an obtained design are explained.  相似文献   

14.
Propagation loss can occur in photonic crystal waveguides without complete optical confinement. We employ a highly efficient transfer-matrix method which allows for accurate and reliable extraction of the propagation loss even at an extremely low level. The results for a two-dimensional photonic crystal waveguide shows that the loss exponentially decays via the waveguide wall thickness. An anomalous phenomenon is found where the loss for guided modes near the upper band gap edge can be several orders of magnitude smaller than that for modes in the middle of the band gap. This anomaly can be well explained by the localization degree of guided modes at different frequency domains.  相似文献   

15.
We study the beaming effect of light for the case of increased-index photonic crystal (PhC) waveguides, formed through the omission of low-dielectric media in the waveguide region. We employ the finite-difference time-domain numerical method for characterizing the beaming effect and determining the mechanisms of loss and the overall efficiency of the directional emission. We find that, while this type of PhC waveguide is capable of producing a highly collimated emission as was demonstrated experimentally, the inherent characteristics of the structure result in a restrictively low efficiency in the coupling of light into the collimated beam of light.  相似文献   

16.
A two-dimensional photonic crystal waveguide with a novel geometry is introduced. The center line of this waveguide is bent along a free-curve such that the direction of the propagating light can be changed without scattering or reflection losses. The design method is described for a triangular lattice, its optical properties such as transmission spectrum and dispersion relation are calculated, and actual devices are then fabricated and demonstrated that they worked as optical waveguides.  相似文献   

17.
We present here a tight-binding-like modelling of two-dimensional (2D) photonic crystals (PCs). Adopted from solid-state physics, the concept of generalized Wannier functions is used to construct a localized state basis that allows a parameter-free ab initio study of defects in PCs. We demonstrate here for a 2D triangular lattice of dielectric rods in air, the existence of this localized basis and the possibility to study large scale complex dielectric structures deviating from periodicity. Specific numerical simulations on a split waveguide embedded in this triangular lattice are performed, and they demonstrate the superiority of this method over plane wave based techniques.  相似文献   

18.
The contra-directional coupling between two photonic crystal (PC) waveguides is studied, using the finite-difference time-domain (FDTD) method. A design of contra-directional coupler is presented and its transmission properties are investigated. The device can be used as an add/drop filter. It is also shown that the coupled mode theory is suitable to study the photonic crystal waveguide coupler.  相似文献   

19.
We investigate modes excitation with the input field of different positions in two-dimensional multimode photonic crystal waveguides. Odd modes can be selectively excited by the input field of odd symmetry. The input field with different positions can excite different modes due to the field intensity distribution of modes. When the input field locates at the position of the zero field, intensity of waveguide modes is zero and the modes are not excited. The finite-difference time-domain method is used to obtain the excited field distributions.  相似文献   

20.
We study nonlinear Cerenkov radiation generated from a nonlinear photonic crystal waveguide where the nonlinear susceptibility tensor is modulated by the ferroelectric domain. Nonlinear polarization driven by an incident light field may emit coherently harmonic waves at new frequencies along the direction of Cerenkov angles. Multiple radiation spots with different azimuth angles are simultaneously exhibited from such a hexagonally poled waveguide. A scattering involved nonlinear Cerenkov arc is also observed for the first time. Cerenkov radiation associated with quasi-phase matching leads to these novel nonlinear phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号