首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Information processing and cell signalling in biological systems relies on passing chemical signals across lipid bilayer membranes, but examples of synthetic systems that can achieve this process are rare. A synthetic transducer has been developed that triggers catalytic hydrolysis of an ester substrate inside lipid vesicles in response to addition of metal ions to the external vesicle solution. The output signal generated in the internal compartment of the vesicles is produced by binding of a metal ion cofactor to a head group on the transducer to form a catalytically competent complex. The mechanism of signal transduction is based on transport of the metal ion cofactor across the bilayer by the transducer, and the system can be reversibly switched between on and off states by adding cadmium(ii) and ethylene diamine tetracarboxylic acid input signals respectively. The transducer is also equipped with a hydrazide moiety, which allows modulation of activity through covalent conjugation with aldehydes. Conjugation with a sugar derivative abolished activity, because the resulting hydrazone is too polar to cross the bilayer, whereas conjugation with a pyridine derivative increased activity. Coupling transport with catalysis provides a straightforward mechanism for generating complex systems using simple components.

Synthetic transducers transport externally added metal ion cofactors across the lipid bilayer membrane of vesicles to trigger catalysis of ester hydrolysis in the inner compartment. Signal transduction activity is modulated by hydrazone formation.  相似文献   

2.
The ability to reproduce signal transduction and cellular communication in artificial cell systems is significant in synthetic protobiology. Here, we describe an artificial transmembrane signal transduction through low pH-mediated formation of the i-motif and dimerization of DNA-based artificial membrane receptors, which is coupled to the occurrence of fluorescence resonance energy transfer and the activation of G-quadruplex/hemin-mediated fluorescence amplification inside giant unilamellar vesicles. Moreover, an intercellular signal communication model is established when the extravesicular H+ input is replaced by coacervate microdroplets, which activate the dimerization of the artificial receptors, and subsequent fluorescence production or polymerization in giant unilamellar vesicles. This study represents a crucial step towards designing artificial signalling systems with environmental response, and provides an opportunity to establish signalling networks in protocell colonies.  相似文献   

3.
Indole is an important biological signalling molecule produced by many Gram positive and Gram negative bacterial species, including Escherichia coli. Here we study the effect of indole on the electrical properties of lipid membranes. Using electrophysiology, we show that two indole molecules act cooperatively to transport charge across the hydrophobic core of the lipid membrane. To enhance charge transport, induced by indole across the lipid membrane, we use an indole derivative, 4 fluoro‐indole. We demonstrate parallels between charge transport through artificial lipid membranes and the function of complex eukaryotic membrane systems by showing that physiological indole concentrations increase the rate of mitochondrial oxygen consumption. Our data provide a biophysical explanation for how indole may link the metabolism of bacterial and eukaryotic cells.  相似文献   

4.
We demonstrate here that nanotube-vesicle networks can be constructed directly from plasma membranes of cultured cells. We used a combination of dithiothreitol (DTT) and formaldehyde to produce micron-sized plasma membrane vesicles that were subsequently shaped into networks using micromanipulation methods previously used on purely synthetic systems. Only a single cell is required to derive material sufficient to build a small network. This protocol covers the advantages of reconstitution in vesicles, such as full control over the solution environment, while keeping the proteins in their original surroundings with the proper orientation. Furthermore, control of membrane protein and lipid content in the networks is achievable by employing different cell types, for example, by overexpression of a desired protein or the use of specialized cell-types as sources for rare proteins and lipids. In general, the method provides simple accessibility for functional studies of plasma membrane constituents. Specifically, it provides a direct means to functionalize nanotube-vesicle networks with desired proteins and lipids for studies of transport activity both across membranes (protein-mediated) and across nanotubes (diffusion), and substrate conversion down to the single-molecule limit. Nanotube-vesicle networks can adopt different geometries and topologies and undergo shape changes at will, providing a flexible system for changing the physical and chemical environment around, for example, a membrane protein. Furthermore, the method offers unique possibilities for extracting membrane and protein material for nanotechnological sensor and analytical devices based on lipid membrane networks.  相似文献   

5.
Abstract— The characterization and kinetic analysis by laser Rash photolysis of an improved model system for observing chlorophyll a photosensitized electron transfer across a lipid bilayer membrane is described. In this system, the electron acceptor is a water-soluble naphthoquinone, S-(2-methyl-l,4-naphthoquinonyl-3)-glutathione (MGNQ) which is dissolved in the inner aqueous compartments of phospholipid bilayer vesicles, and the electron donor is glutathione (GSH) which is dissolved in the outer aqueous phase. Chlorophyll (Chl) is dissolved in the membrane. Oxidative quenching of the triplet state of Chl by the quinone at the inner surface of the vesicle produces the Chl+ and MGNQ- radicals. Chi+ is reduced by GSH at the outer surface of the vesicle (k= 2.6 × 106M-1 s-1) in competition with the recombination between Chl+. and MGNO- (k= 2.5 × 103 S-1). It is shown that a kinetic mechanism involving competition between recombination, electron transfer across the bilayer, and reduction by donor at the opposite surface can quantitatively account for the decay of Chl+. Electron transport across the bilayer is postulated to occur by a two-step mechanism involving electron exchange between Chl and Chl+ within the lipid monolayer (k= 3.2 × 106 M-1 s-1) and across the bilayer. The rate constant for the latter exchange process approaches 104 s-1 as the concentration of Chl in the bilayer increases. Under appropriate conditions, approximately 20% of all photons absorbed by the vesicle system result in electron transfer across the mcmbrane from GSH to MGNQ.  相似文献   

6.
Combinatorial peptide chemistry and orthogonal high-throughput screening were used to select peptides that spontaneously translocate across synthetic lipid bilayer membranes without permeabilization. A conserved sequence motif was identified that contains several cationic residues in conserved positions in an otherwise hydrophobic sequence. This 9-residue motif rapidly translocates across synthetic multibilayer vesicles and into cells while carrying a large polar dye as a "cargo" moiety. The extraordinary ability of this family of peptides to spontaneously translocate across bilayers without an energy source of any kind is distinctly different from the behavior of the well-known, highly cationic cell-penetrating peptides, such as the HIV tat peptide, which do not translocate across synthetic bilayers, and enter cells mostly by active endocytosis. Peptides that translocate spontaneously across membranes have the potential to transform the field of drug design by enabling the delivery of otherwise membrane-impermeant polar drugs into cells and tissues. Here we describe the chemical tools needed to rapidly identify spontaneous membrane translocating peptides.  相似文献   

7.
There has been a tremendous evolution for artificial ion transport systems, especially gated synthetic systems, which closely mimic their natural congeners. Herein, we demonstrate a trans-azobenzene-based photoregulatory anionophoric system that transports chloride by forming a sandwich dimeric complex. Further studies confirmed a carrier-mediated chloride-anion antiport mechanism, and the supramolecular interactions involved in chloride recognition within the sandwich complex were revealed from theoretical studies. Reversible trans–cis photoisomerization of the azobenzene was achieved without any significant contribution from the thermal cistrans isomerization at room temperature. Photoregulatory transport activity across the lipid bilayer membrane inferred an outstanding off-on response of the azobenzene photoswitch.  相似文献   

8.
Three unimolecular peptide channels have been designed and prepared by using the β‐helical conformation of gramicidin A (gA). The new peptides bear one to three NH3+ groups at the N‐end and one to three CO2? groups at the C‐end. These zwitterionic peptides were inserted into lipid bilayers in an orientation‐selective manner. Conductance experiments on planar lipid bilayers showed that this orientation bias could lead to observable directional K+ transport under multi‐channel conditions. This directional transport behavior can further cause the generation of a current across a planar bilayer without applying a voltage. More importantly, in vesicles with identical external and internal KCl concentrations, the channels can pump K+ across the lipid bilayer and cause a membrane potential.  相似文献   

9.
The heat of transport of oxygen across a membrane mediated by hemoglobin (Hb) as a carrier is iuvestigated by the method of irreversible thermodynamics. It is assumed that oxygen combines with hemoglobin molecules to form oxyhemoglobin according to the reaction nO2 + Hb=HbOzn. The oxyhemoglobin molecule HbOzn then migrates to a new position and is reconverted to Hb by releasing oxygen. It is shown that the heat of transport of oxygen consists of two contributions; one due to the reaction and the other from thermal diffusion of individual species present. Total oxygen flux across the membrane is also calculated in terms of temperature and the chemical potential difference of oxygen across the membrane. The use of the heat of transport as a measure of the efficiency of the heat pump for the carrier-mediated transport process is investigated.  相似文献   

10.
In biology, membrane-spanning proteins are responsible for the transmission of chemical signals across membranes, including the signal recognition-mediated conformational change of transmembrane receptors at the cell surface, and a trigger of an intracellular phosphorylation cascade. The ability to reproduce such biological processes in artificial systems has potential applications in smart sensing, drug delivery, and synthetic biology. Here, an artificial transmembrane receptors signaling system was designed and constructed based on modular DNA scaffolds. The artificial transmembrane receptors in this system are composed of three functional modules: signal recognition, lipophilic transmembrane linker, and signal output modules. Adenosine triphosphate (ATP) served as an external signal input to trigger the dimerization of two artificial receptors on membranes through a proximity effect. This effect induced the formation of a G-quadruplex, which served as a peroxidase-like enzyme to facilitate a signal output measured by either fluorescence or absorbance in the lipid bilayer vesicles. The broader utility of this modular method was further demonstrated using a lysozyme-binding aptamer instead of an ATP-binding aptamer. Therefore, this work provides a modular and generalizable method for the design of artificial transmembrane receptors. The flexibility of this synthetic methodology will allow researchers to incorporate different functional modules while retaining the same molecular framework for signal transduction.

An artificial transmbrane signal transducer was developed through the chemical input-mediated dimerization of artificial DNA transmembrane receptors and the subsequent activation of a cascade of events inside the vesicles.  相似文献   

11.
The effect of defects in a dipalmitoylphosphatidylcholine (DPPC) membrane on Ca2+ permeability across the membrane was studied. Addition of teleocidin to a suspension of DPPC vesicles encapsulating Quin 2 increased the fluorescence intensity of Quin 2. Change of fluorescence intensity was significant below the phase-transition temperature of the membrane, and increased according to the kind of divalent metal ions in the medium in the order of Mg2+2+2+. It was confirmed that DPPC vesicles did not change the vesicular structure upon binding teleocidin to the membrane. Therefore, the fluorescence increase below the phase-transition temperature was ascribed to the influx of divalent cations into DPPC vesicles through cracks formed in the membrane upon distribution of teleocidin. By contrast, 12-0-tetradecanoylphorbol-13-acetate (TPA) did not change the fluorescence intensity of Quin 2 significantly. It should be noted that teleocidin, which located at the membrane surface, yielded more significant defects across the lipid membrane than TPA, which was incorporated into the hydrophobic core of the membrane.  相似文献   

12.
Selective transport of potassium ions through synthetic membranes impregnated with valinomycin in octane-2-ol in the presence of equal amounts of K+ and Na+ or Li+ ions is induced on application of a potential difference across these membranes. By using 14C-labelled valinomycin it is shown that transport of potassium ions is accompanied by an equivalent transport of valinomycin within the membrane, consistent with the formation of a 1 : 1 complex of K+ with valinomycin. The exchange of ligands is shown to occur during the transport process so that a carrier-relay mechanism, as proposed earlier for macrotetrolide-mediated potassium transport, accounts for all experimental results on the bulk membranes studied.  相似文献   

13.
We have investigated how doubly selective synthetic mimics of antimicrobial peptides (SMAMPs), which can differentiate not only between bacteria and mammalian cells, but also between Gram‐negative and Gram‐positive bacteria, make the latter distinction. By dye‐leakage experiments on model vesicles and complementary experiments on bacteria, we were able to relate the Gram selectivity to structural differences of these bacteria types. We showed that the double membrane of E. coli rather than the difference in lipid composition between E. coli and S. aureus was responsible for Gram selectivity. The molecular‐weight‐dependent antimicrobial activity of the SMAMPs was shown to be a sieving effect: while the 3000 g mol?1 SMAMP was able to penetrate the peptidoglycan layer of the Gram‐positive S. aureus bacteria, the 50000 g mol?1 SMAMP got stuck and consequently did not have antimicrobial activity.  相似文献   

14.
The aim of the present work was to design functionalized lipidic membranes that can selectively interact with lanthanide ions at the interface and to exploit the interaction between membranes induced by this molecular-recognition process with a view to building up self-assembled vesicles or controlling the permeability of the membrane to lanthanide ions. Amphiphilic molecules bearing a beta-diketone unit as head group were synthesized and incorporated into phospholipidic vesicles. Binding of Eu(III) ions to the amphiphilic ligand can lead to formation of a complex involving ligands of the same vesicle membrane (intravesicular complex) or of two different vesicles (intervesicular complex). The effect of Eu(III) ions on vesicle behavior was studied by complementary techniques such as fluorimetry, light scattering, and electron microscopy. The formation of an intravesicular luminescent Eu/beta-diketone ligand (1/2) complex was demonstrated. The linear increase in the binding constant with increasing concentration of ligands in the membrane revealed a cooperative effect of the ligands distributed in the vesicle membrane. The luminescence of this complex can be exploited to monitor the kinetics of complexation at the interface of the vesicles, as well as ion transport across the membrane. By encapsulation of 2,6-dipicolinic acid (DPA) as a competing ligand which forms a luminescent Eu/DPA complex, the kinetics of ion transport across the membrane could be followed. These functional vesicles were shown to be an efficient system for the selective transport of Eu(III) ions across a membrane with assistance by beta-diketone ligands.  相似文献   

15.
The nuclear properties of99mTc radionuclide are ideal for organ imaging. Study of the technetium transport across supported liquid membranes has been performed to get data for its separation from other elements. Tri-n-octylamine diluted in xylene was used to constitute the liquid membranes, supported in polypropylene microporous films. Stripping on the product solution side was performed with dilute NaOH solutions. The effect of sulphuric acid, nitric acid and hydrochloric acid in the feed on transport of99mTc as TcO 4 ions has been studied. The permeability of the given ions determined from kinetic activity data has been found to be in the order of PH2SO4>PHCl>PHNO3. The flux values have been calculated based on this permeability data. The increase in carrier concentration has shown an increase in flux and permeability values to a given optimum concentration. The increase in temperature has been found to reduce the transport of Tc ions. The optimum conditions for transport of99mTc for the given acid concentration have been determined. Mechanism of Tc ion transport has also been provided based on chemical reactions involved at the membrane interfaces and uptake of Tc ions by the membrane. MoO 4 2– ions do not permeate through membrane under optimum conditions of transport for TcO 4 2– ions from H2SO4 solution.  相似文献   

16.
Abstract— It has been assumed that proton pumps such as purple membrane lack redox loops. However, purple membrane does contain an electron carrier. Kates et al. (Meth. Enzymol. 88,98–1 111, 1982) reported the presence of 1 mole of vitaminMK–8 to 6 mol of bacteriorhodopsin among the nonpolar lipids. Is this quinone functionally important in the proton pump mechanism? Proton pumping rates were measured with lipid-free bacteriorhodopsin reconstituted in vesicles to which varying amounts of vitamin K1 were added. With soybean lipids, in the presence of tetraphenyl boron, the pump quantum yield was 0.04H+/photon. This result was independent of the amount of vitamin K, added over a range of 0 to a 100-fold mole ratio to bacteriorhodopsin. A similar result was obtained with H. halobium lipids. The pump quantum yield in vesicles is much less than reported for membrane sheets and whole cells. The results support the conclusion that a vitamin K Q-cycle is not involved in the purple membrane proton pump.  相似文献   

17.
The membrane aromatic recovery system (MARS) is a new membrane technology which recovers aromatic acids and bases. The first industrial installation has been operating at a Degussa site in the UK recovering cresols since 2002. The state of the art MARS technology employs a tubular silicone rubber membrane. However, this places some limitations on the process due to relatively low mass transfer rates and limited chemical resistance.In this paper, flat sheet composite membranes were investigated for application to the MARS process. In particular for recovery of compounds, such as 1,2-benzisothiazolin-3-one (BIT) which show low mass transfer rates through the current membrane. These composite membranes are comprised of a thin nonporous PDMS selective layer coated on a microporous support layer cast from polyacrylonitrile, polyvinylidene fluoride, polyetherimide or polyphenylenesulphone. The membranes have been characterised using SEM and gas permeation. The mass transfer of BIT through the composite membranes with no chemical reaction enhancement was an order of magnitude higher than through tubular silicone rubber membranes (10−7 m s−1 versus 10−8 m s−1). With chemical reaction enhancement, the mass transfer increased by another order of magnitude to 1.6 × 10−6 m s−1 for BIT through a PVDF supported composite membrane. Mass transfer through the composite membrane was described well using analysis based on the resistance in series theory with chemical reaction. However, when a high osmotic pressure was applied across the membrane (molarity  3 M), significant water transport occurred across the membrane.  相似文献   

18.
The present paper deals with the studies on the partitioning of actinides from high level liquid waste solution of PUREX origin employing supported liquid membrane technique. The process uses solution of Cyanex-923 in n-dodecane as a carrier with poly tetra fluoro ethylene support and a mixture of citric acid, formic acid and hydrazine hydrate as a receiving phase. Transport studies are carried out for 241Am under different experimental conditions to optimize the transport parameters such as feed acidity, carrier concentration, effect of uranium, trivalent metal ion and salt concentration in the feed. Studies indicated good transport of actinides across the membrane from nitric acid medium. Under the optimized conditions the transport of 241Am is studied from a uranium depleted synthetic PHWR-HLLW and finally the technique has been used for the partitioning of alpha emitters from an actual research reactor-HLLW. High concentration of uranium in the feed is found to retard the transport of americium, suggesting the need for prior removal of uranium from the waste.  相似文献   

19.
The detailed analysis of membrane phenomena in the system Nafion 120 membrane/NaOHaq at 298, 313 and 3n33 K has been performed, taking for discussion the phenomenological transport coefficients rii, fik and diffusion indices ir. Comparing the numerical values found here with the corresponding data determined for the system with NaCl solutions it is shown that cation-anion frictional force, which is usually assumed zero, cannot be neglected for the Na+-OH pair of ions. These interactions influence diffusional and osmotic transport of a solute and water across the membrane. Another specific effect of OH ions important for membrane permeation is the very low friction of OH ions with water.  相似文献   

20.
ClC-ec1 is a Cl/H+ antiporter that exchanges Cl and H+ ions across the membrane. Experiments have demonstrated that several mutations, including I109F, decrease the Cl and H+ transport rates by an order of magnitude. Using reactive molecular dynamics simulations of explicit proton transport across the central region in the I109F mutant, a two-dimensional free energy profile has been constructed that is consistent with the experimental transport rates. The importance of a phenylalanine gate formed by F109 and F357 and its influence on hydration connectivity through the central proton transport pathway is revealed. This work demonstrates how seemingly subtle changes in local conformational dynamics can dictate hydration changes and thus transport properties. © 2019 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号