首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A MS‐based methodology has been developed for analysis of core‐fucosylated versus antennary‐fucosylated glycosites in glycoproteins. This procedure is applied to the glycoprotein alpha‐1‐antitrypsin (A1AT), which contains both core‐ and antennary‐fucosylated glycosites. The workflow involves digestion of intact glycoproteins into glycopeptides, followed by double digestion with sialidase and galactosidase. The resulting glycopeptides with truncated glycans were separated using an off‐line HILIC (hydrophilic interaction liquid chromatography) separation where multiple fractions were collected at various time intervals. The glycopeptides in each fraction were treated with PNGase F and then divided into halves. One half of the sample was applied for peptide identification while the other half was processed for glycan analysis by derivatizing with a meladrazine reagent followed by MS analysis. This procedure provided site‐specific identification of glycosylation sites and the ability to distinguish core fucosylation and antennary fucosylation via a double digestion and a mass profile scan. Both core and antennary fucosylation are shown to be present on various glycosites in A1AT.  相似文献   

2.
Site-specific characterisation of mucin-type O-linked glycosylation is an analytical challenge due to glycan heterogeneity, lack of glycosylation site consensus sequence and high density of occupied glycosylation sites. Here, we report the use of electron transfer dissociation (ETD) for the site-specific characterisation of densely glycosylated mucin-type O-linked glycopeptides using ESI-IT-MS/MS. Synthetic glycopeptides from the human mucin-1 (MUC-1) tandem repeat region containing a range of O-linked, tumour-associated carbohydrate antigens, namely Tn, T and sialyl T, with different glycosylation site occupancies and an increasing number of tandem repeats were studied. In addition, a glycopeptide from the anti-freeze glycoprotein of Antarctic and Arctic notothenoids, bearing four O-linked, per-acetylated T antigens was characterised. ETD MS/MS of infused or capillary LC-separated glycopeptides provided broad peptide sequence coverage (c/z·-type fragment ions) with intact glycans still attached to the Ser/Thr residues. Thus, the glycosylation sites were unambiguously determined, while simultaneously obtaining information about the attached glycan mass and peptide identity. Highly sialylated O-glycopeptides showed less efficient peptide fragmentation, but some sequence and glycosylation site information was still obtained. This study demonstrates the capabilities of ETD MS/MS for site-specific characterisation of mucin-type glycopeptides containing high-density O-linked glycan clusters, using accessible and relative low-resolution/low-mass accuracy IT MS instrumentation.  相似文献   

3.
N-Glycosylation of cellobiohydrolase I from the fungus Trichoderma reesei (strain Rut-C30) is studied using a combination of electrophoretic, chromatographic and mass spectrometric techniques. As four potential N-glycosylation sites and several uncharged and phosphorylated high-mannose glycans are present, a large number of glycoforms and phospho-isoforms can be expected. Isoelectric focusing both in gel and in capillary format was successfully applied for the separation of the phospho-isoforms. They were extracted in their intact form from the gel and subsequently analysed by nanospray-Q-TOF-MS, thereby making use of a powerful two-dimensional technique. Nano-LC/MS/MS on a Q-Trap MS further allowed the determination of the glycosylation sites. As a novel approach, an oxonium ion was used in precursor ion scanning for selective detection of glycopeptides containing phosphorylated high-mannose glycans.  相似文献   

4.
Mass spectrometry (MS) is used to quantify the relative distribution of glycans attached to particular protein glycosylation sites (micro‐heterogeneity) and evaluate the molar site occupancy (macro‐heterogeneity) in glycoproteomics. However, the accuracy of MS for such quantitative measurements remains to be clarified. As a key step towards this goal, a panel of related tryptic peptides with and without complex, biantennary, disialylated N‐glycans was chemically synthesised by solid‐phase peptide synthesis. Peptides mimicking those resulting from enzymatic deglycosylation using PNGase F/A and endo D/F/H were synthetically produced, carrying aspartic acid and N‐acetylglucosamine‐linked asparagine residues, respectively, at the glycosylation site. The MS ionisation/detection strengths of these pure, well‐defined and quantified compounds were investigated using various MS ionisation techniques and mass analysers (ESI‐IT, ESI‐Q‐TOF, MALDI‐TOF, ESI/MALDI‐FT‐ICR‐MS). Depending on the ion source/mass analyser, glycopeptides carrying complex‐type N‐glycans exhibited clearly lower signal strengths (10–50% of an unglycosylated peptide) when equimolar amounts were analysed. Less ionisation/detection bias was observed when the glycopeptides were analysed by nano‐ESI and medium‐pressure MALDI. The position of the glycosylation site within the tryptic peptides also influenced the signal response, in particular if detected as singly or doubly charged signals. This is the first study to systematically and quantitatively address and determine MS glycopeptide ionisation/detection strengths to evaluate glycoprotein micro‐heterogeneity and macro‐heterogeneity by label‐free approaches. These data form a much needed knowledge base for accurate quantitative glycoproteomics. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Glycoproteins secreted or expressed on the cell surface at specific pathophysiological stages are well-recognized disease biomarkers and therapeutic targets. While mapping of specific glycan structures can be performed at the level of released glycans, site-specific glycosylation and identification of specific protein carriers can only be determined by analysis of glycopeptides. A key enabling step in mass spectrometry (MS)-based glycoproteomics is the ability to selectively or non-selectively enrich for the glycopeptides from a total pool of a digested proteome for MS analysis since the highly heterogeneous glycopeptides are usually present at low abundance and ionize poorly compared with non-glycosylated peptides. Among the most common approaches for non-destructive and non-glycan-selective glycopeptide enrichment are strategies based on various forms of hydrophilic interaction liquid chromatography (HILIC). We present here a variation of this method using amine-derivatized Fe3O4 nanoparticles, in concert with in situ peptide N-glycosidase F digestion for direct matrix-assisted laser desorption/ionization–mass spectrometry analysis of N-glycosylation sites and the released glycans. Conditions were also optimized for efficient elution of the enriched glycopeptides from the nanoparticles for on-line nanoflow liquid chromatography–MS/MS analysis. Successful applications to single glycoproteins as well as total proteomic mixtures derived from biological fluids established the unrivaled practical versatility of this method, with enrichment efficiency comparable to other HILIC-based methods.  相似文献   

6.
Liquid chromatography mass spectrometry (LC-MS) peptide mapping can be a versatile technique for characterizing protein glycosylation sites without the need to remove the attached glycans as in conventional oligosaccharide mapping methods. In this way, both N-linked and O-linked sites of glycosylation can each be directly identified, characterized, and quantified by LC-MS as intact glycopeptides in a single experiment. LC-MS peptide mapping of the individual glycosylation sites avoids many of the limitations of preparing and analyzing an entire pool of released N-linked oligosaccharides from all sites mixed together. In this study, LC interfaced to a linear ion trap mass spectrometer (ESI-LIT-MS) were used to characterize the glycosylation of a recombinant IgG1 monoclonal antibody and a CTLA4-Ig fusion protein with multiple sites of N-and O-glycosylation. Samples were reduced, S-carboxyamidomethylated, and cleaved with either trypsin or endoproteinase Asp-N. Enhanced detection for minor IgG1 glycoforms (~0.1 to 1.0 mol% level) was obtained by LC-MS of the longer 32-residue Asp-N glycopeptide (4+ protonated ion) compared to the 9-residue tryptic glycopeptide (2+ ion). LC-MS peptide mapping was run according to a general procedure: (1) Locate N-linked and/or O-linked sites of glycosylation by selected-ion-monitoring of carbohydrate oxonium fragment ions generated by ESI in-source collision-induced dissociation (CID), i.e. 204, 366, and 292 Da marker ions for HexNAc, HexNAc-Hex, and NeuAc, respectively; (2) Characterize oligosaccharides at each site via MS and MSMS. Use selected ion currents (SIC) to estimate relative amounts of each glycoform; and (3) Measure the percentage of site-occupancy by searching for any corresponding nonglycosylated peptide.  相似文献   

7.
Glycans are oligosaccharides associated with proteins, and are known to confer specific functions and conformations on glycoproteins. As protein tridimensional structures are related to function, the study of glycans and their impact on protein folding can provide important information to the field of proteomics. The subdiscipline of glycomics (or glycoproteomics) is rapidly growing in importance as glycans in proteins have shown to be involved in protein-protein or protein-(drug, virus, antibody) interactions. Glycomics studies most often aim at identifying glycosylation sites, and thus are performed on deglycosylated proteins resulting in loss of site-specific details concerning the glycosylation. In order to obtain such details by mass spectrometry (MS), either whole glycoproteins must be digested and analyzed as mixtures of peptides and glycopeptides, or glycans must be isolated from glycopeptide fractions and analyzed as pools. This article describes parallel experiments involving both approaches, designed to take advantage of the StrOligo algorithm functionalities with the aim of characterizing glycosylation microheterogeneity on a specific site. A hybrid quadrupole-quadrupole-time-of-flight (QqTOF) instrument equipped with a matrix-assisted laser desorption/ionization (MALDI) source was used. Glycosylation of alpha 5 beta 1 subunits of human integrin was studied to test the methodology. The sample was divided in two aliquots, and glycans from the first aliquot were released enzymatically, labelled with 2-aminobenzamide, and identified using tandem mass spectrometry (MS/MS) and the StrOligo program. The other aliquot was digested with trypsin and the resulting peptides separated by reversed-phase high-performance liquid chromatography (HPLC). A specific collected fraction was then analyzed by MS before and after glycan release. These spectra allowed, by comparison, detection of a glycopeptide (several glycoforms) and elucidation of peptide sequence. Compositions of glycans present were proposed, and identification of possible glycan structures was conducted using MS/MS and StrOligo.  相似文献   

8.
Interleukin-23 (IL-23) is a heterodimeric cytokine, a central factor in chronic/autoimmune inflammation. It signals through a heterodimeric receptor consisting of IL-23r, which is heavily glycosylated. The structural characterization of IL-23r has not been reported. In this work, glycosylation profiles of soluble recombinant human IL-23r (rhIL-23r) were established using mass spectrometry (MS), which included defining glycosylation sites, degree of glycosylation occupancy of each site and structure of attached oligosaccharides. Specifically, precursor ion scan of oxonium ion protonated N-acetylglucosamine (GlcNAc(+)) (m/z 204) was performed using a triple quadrupole MS instrument to locate the retention time of glycopeptides. Both the glycopeptides and their corresponding deglycosylated forms in each collected HPLC fraction were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS) (LTQ-Orbitrap) for glycosylation site profiling. The attached glycan structures were elucidated by collision-induced dissociation (CID) fragmentation of target glycopeptides in combination with accurate mass measurement. Eight glycosylation sites were identified on IL-23r (Asn24, Asn209, Asn239, Asn157, Asn118, Asn250, Asn58 and Asn6). Most of the glycosylation sites were > 95% occupied except Asn250 and Asn6. Those two sites were 88% and 45% occupied by estimation from trypsin digestion and were 55% and 42% occupied from LysC digestion. Multiple glycoforms were observed in IL-23r. Most of them were bi-, tri- or tetra-antennary complex type structures with fucose and sialic acid. High mannose and hybrid type glycans were only observed on Asn157. The structural characterization on IL-23r glycosylation provides useful information for better understanding of the biological function of IL-23r.  相似文献   

9.
Defining the structures and locations of the glycans attached on secreted proteins and virus envelope proteins is important in understanding how glycosylation affects their biological properties. Glycopeptide mass spectrometry (MS)-based analysis is a very powerful, emerging approach to characterize glycoproteins, in which glycosylation sites and the corresponding glycan structures are elucidated in a single MS experiment. However, to date there is not a consensus regarding which mass spectrometric platform provides the best glycosylation coverage information. Herein, we employ two of the most widely used MS approaches, online high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC/ESI-MS) and offline HPLC followed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), to determine which of the two approaches provides the best glycosylation coverage information of a complex glycoprotein, the group M consensus HIV-1 envelope, CON-S gp140DeltaCFI, which has 31 potential glycosylation sites. Our results highlight differences in the informational content obtained between the two methods such as the overall number of glycosylation sites detected, the numbers of N-linked glycans present at each site, and the type of confirmatory information obtained about the glycopeptide using MS/MS experiments. The two approaches are quite complementary, both in their coverage of glycopeptides and in the information they provide in MS/MS experiments. The information in this study contributes to the field of mass spectrometry by demonstrating the strengths and limitations of two widely used MS platforms in glycoprotein analysis.  相似文献   

10.
刘璐瑶  秦洪强  叶明亮 《色谱》2021,39(10):1045-1054
蛋白质糖基化是生物体内最重要的翻译后修饰之一,在蛋白质稳定性、细胞内和细胞间信号转导、激素活化或失活和免疫调节等生理过程和病理进程中发挥重要作用。而异常的蛋白质糖基化往往和多种疾病的发生发展密切相关,目前应用于临床检测的多种肿瘤生物标志物大多属于糖蛋白或者糖抗原。因此在组学层次系统分析蛋白质糖基化的变化对阐明生物体内糖基化修饰的调控机理和发现新型疾病标志物都非常重要。基于质谱的蛋白质组学技术为全面分析蛋白质及其修饰提供了有效的分析手段。在自下而上的蛋白质组学研究中,由于完整糖基化肽段同时存在性质各异的肽段骨架和糖链结构、糖肽的相对丰度和离子化效率较低以及糖基化修饰有高度异质性等特点,完整糖肽的分析比其他翻译后修饰更加困难。近年来,为了更全面、系统地分析蛋白质糖基化,研究人员发展了一些新技术,包括完整糖肽的富集技术、质谱的碎裂模式和数据采集模式、质谱数据的解析方法和定量策略等等,大力推进了该领域的研究水平,也为研究蛋白质糖基化相关的生物标志物提供了技术支持。该篇综述主要关注近年来基于质谱的糖蛋白质组学研究中的新进展,重点介绍针对完整N-和O-糖基化肽段的富集新技术和谱图解析新方法,并讨论其在肿瘤早期诊断方面的应用潜力。  相似文献   

11.
Previously, we have characterized the HIV-I(SF2) gp120 glycopeptides using matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) and nanospray electrospray ionization (ESI). Although we characterized 25 of 26 consensus glycosylation sites, we could not obtain any information about the extent of sialylation of the complex glycans. Sialylation is known to alter the biological activity of some glycoproteins, e.g., infectivity of some human and nonhuman primate lentiviruses is reduced when the envelope glycoproteins are extensively sialylated, and thus, characterization of the extent of sialylation of complex glycoproteins is of biological interest. Since neither MALDI/MS nor nanospray ESI provided much information about sialylation, probably because of suppression effects inherent in these techniques, we utilized online nanocapillary high performance liquid chromatography (nHPLC) with ESI/MS to characterize the sites and extent of sialylation on gp120. Eight of the known 26 consensus glycosylation sites of HIV-ISF2 gp120 were determined to be sialylated. Two of these sites were previously uncharacterized complex glycans. Thirteen high mannose sites were also determined. The heterogeneity of four of these sites had not been previously characterized. In addition, a peptide containing two consensus glycosylation sites, which had previously been determined to contain complex glycans, was also determined to be high mannose as well.  相似文献   

12.
Glycosylation plays a key role in controlling various cellular processes; in diseases modifications of the glycans also highlight its clinical importance. However, ^glycosylation analysis remains a difficult task. In recent years, ^advances in sample preparation and mass spectrometry have greatly facilitated the analysis of glycoproteins. This review mainly covers five aspects of the improvements and advances on the research of protein glycosylation in China: 1) identification of glycoproteins, ^2) identification of glycosylation sites, ^3) new methods developed for glycopeptides enrichment, ^4) characterization of glycans, ^and 5) functional studies of protein glycosylation.  相似文献   

13.
Thyroid-stimulating hormone is a vital component of the regulatory mechanism that maintains the structure and function of the thyroid gland and governs thyroid hormone release. In this paper we report the first detailed structural characterization of the N-linked oligosaccharides of recombinant human thyroid-stimulating hormone (rhTSH). Using a strategy combining mass spectrometric analysis and sequential exoglycosidase digestion, we have defined the structures of the N-glycans released from recombinant human thyrotropin by peptide N-glycosidase F. All glycans are complex-type glycans and are mainly of the bi- and triantennary type with variable degrees of fucosylation and sialylation. The major non-reducing epitope in the complex-type glycans is: NeuAcalpha2-3Galbeta1-4GlcNAc (sialylated LacNAc). The carbohydrate microheterogeneity at the three glycosylation sites was studied using reversed-phase high-performance liquid chromatography (RP-HPLC), concanavalin A affinity chromatography and mass spectrometric techniques, including both matrix-assisted laser desorption/ionization (MALDI) and electrospray. rhTSH was reduced, carboxymethylated and then digested with trypsin. The mixture of peptides and glycopeptides was subjected to RP-HPLC and the structures of the glycopeptides were determined by MALDI in conjunction with on-target exoglycosidase digestions. After PNGase F digestion, the peptide moiety of the glycopeptide was determined by the presence of the b- and y-series ions derived from its amino acid sequence in the quadrupole time-of-flight tandem mass (QTOF-MS/MS) spectrum. Glycosylation sites Asn-alpha52 and Asn-alpha78 contain mainly bi- and triantennary complex-type glycans. Only glycosylation site Asn-alpha52 bears fucosylated N-glycans. Minor tetraantennary complex structures were also observed on both glycosylation sites. Profiling of the carbohydrate moieties of Asn-beta23 indicates a large heterogeneity. Bi-, tri-, and tetraantennary N-glycans were present at this site. These data demonstrate site-specificity of glycosylation in the alpha subunit but not in the beta subunit of rhTSH with Asn-alpha52 bearing essentially di- and triantennary glycans with or without core fucosylation and bi- and triantennary glycans with no core fucosylation being attached to Asn-alpha78.  相似文献   

14.
Protein glycosylation has a significant medical importance as changes in glycosylation patterns have been associated with a number of diseases. Therefore, monitoring potential changes in glycan profiles, and the microheterogeneities associated with glycosylation sites, are becoming increasingly important in the search for disease biomarkers. Highly efficient separations and sensitive methods must be developed to effectively monitor changes in the glycoproteome. These methods must not discriminate against hydrophobic or hydrophilic analytes. The use of activated graphitized carbon as a desalting media and a stationary phase for the purification and the separation of glycans, and as a stationary phase for the separation of small glycopeptides, has previously been reported. Here, we describe the use of activated graphitized carbon as a stationary phase for the separation of hydrophilic tryptic glycopeptides, employing a chip‐based liquid chromatographic (LC) system. The capabilities of both activated graphitized carbon and C18 LC chips for the characterization of the glycopeptides appeared to be comparable. Adequate retention time reproducibility was achieved for both packing types in the chip format. However, hydrophilic glycopeptides were preferentially retained on the activated graphitized carbon chip, thus allowing the identification of hydrophilic glycopeptides which were not effectively retained on C18 chips. On the other hand, hydrophobic glycopeptides were better retained on C18 chips. Characterization of the glycosylation sites of glycoproteins possessing both hydrophilic and hydrophobic glycopeptides is comprehensively achieved using both media. This is feasible considering the limited amount of sample required per analysis (<1 pmol). The performance of both media also appeared comparable when analyzing a four‐protein mixture. Similar sequence coverage and MASCOT ion scores were observed for all proteins when using either stationary phase. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In contrast to proteomics significantly less efficient analytical tools are presently available for high throughput glycomics using mass spectrometry. In this article, a strategy to use the (0,2)A(n) ring cleavage ion at the reducing end of free glycans as a diagnostic ion for assignment of free glycans, in presence of glycopeptides containing similar glycosylation patterns, is presented for rapid distinction in complex mixtures by mass spectrometry. The MS to MS/MS automatic switching, already previously introduced for the on-line LC-MS and CE-MS analysis, is shown in this contribution to be highly functional to obtain diagnostic fragmentation patterns of free glycan precursors in rapid screening of highly complex glycoconjugate mixtures obtained from clinical samples, namely from the urine of patients suffering from congenital disorders of glycosylation. Congenital disorders of glycosylation (CDG) are inherited metabolic diseases based on defects in the glycosylation pathways of glycoconjugates. The urine of CDG patients was reported to contain O-glycans and glycosylated amino acids at concentrations two to three orders of magnitude higher in comparison with the healthy control, characterized by a high degree of heterogeneity concerning the type, number, and values of molecular ions. Using the (0,2)A(n) ring cleavage ion approach by tandem MS, it was possible to sort out free glycans and get them assigned.  相似文献   

16.
Analysis of protein glycosylation is challenging due to micro- and macro-heterogeneity of the attached glycans. Hydrophilic interaction liquid chromatography (HILIC) is a mode of choice for separation of intact glycopeptides, which are inadequately resolved by reversed phase chromatography. In this work, we propose an easy-to-use model to predict retention time windows of glycopeptides in HILIC. We constructed this model based on the parameters derived from chromatographic separation of six differently glycosylated peptides obtained from tryptic digests of three plasma proteins: haptoglobin, hemopexin, and sex hormone-binding globulin. We calculated relative retention times of different glycoforms attached to the same peptide to the bi-antennary form and showed that the character of the peptide moiety did not significantly change the relative retention time differences between the glycoforms. To challenge the model, we assessed chromatographic behavior of fetuin glycopeptides experimentally, and their retention times all fell within the calculated retention time windows, which suggests that the retention time window prediction model in HILIC is sufficiently accurate. Relative retention time windows provide complementary information to mass spectrometric data, and we consider them useful for reliable determination of protein glycosylation in a site-specific manner.  相似文献   

17.
Protein glycosylation is one of the most common post-translational modifications, estimated to occur in over 50% of human proteins. Mass spectrometry (MS)-based approaches involving different fragmentation mechanisms have been frequently used to detect and characterize protein N-linked glycosylations. In addition to the popular Collision-Induced Dissociation (CID), high-energy C-trap dissociation (HCD) fragmentation, which is a feature of a linear ion trap orbitrap hybrid mass spectrometer (LTQ Orbitrap), has been recently used for the fragmentation of tryptic N-linked glycopeptides in glycoprotein analysis. The oxonium ions observed with high mass accuracy in the HCD spectrum of glycopeptides can be combined with characteristic fragmentation patterns in the CID spectrum resulting from consecutive glycosidic bond cleavages, to improve the detection and characterization of N-linked glycopeptides. As a means of automating this process, we describe here GlypID 2.0, a software tool that implements several algorithmic approaches to utilize MS information including accurate precursor mass and spectral patterns from both HCD and CID spectra, thus allowing for an unequivocal and accurate characterization of N-linked glycosylation sites of proteins.  相似文献   

18.
The extent of N-glycosylation of yeast external invertase at each of the 14 potential sites was determined by the combination of proteolytic digestions and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI/TOF-MS). The average molecular mass of the intact external invertase was determined as 97 kDa by MALDI/TOF-MS. The intact protein was digested with trypsin, Lys-C and Asp-N, followed by high-performance liquid chromatographic separation. The proteolytic digests were analyzed by MALDI/MS screening for the glycopeptides. The glycopeptides were then treated with peptide:N-glycosidase F (PNGase F) and/or endo-beta-N-acetylglucosaminidase (Endo H) and the molecular mass of the deglycosylated peptide was determined by MALDI/MS and matched with the peptide predicted by a computer program. The sequences of some peptides or deglycosylated peptides were identified by the MALDI post-source decay technique. The size of the oligosaccharide, the degree of glycosylation and the distribution of the oligosaccharides at each individual potential glycosylation site were characterized. This information goes for beyond previously published data and sometimes differs from them. During this study, the amino acid sequence originally derived from the DNA sequence of the gene coding for invertase was also verified and it was found that this protein when expressed from SUC2 gene might be created as more than one sequence which differ by a few amino acid substitutions (Asn58<-->Thr, Asn65-->His and Val412<-->Ala).  相似文献   

19.
Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.  相似文献   

20.
Recombinant human erythropoietin (rhEPO) has been extensively used as a pharmaceutical product for treating anemia. Glycosylation of rhEPO affects the biological activity, immunogenicity, pharmacokinetics, and in-vivo clearance rate of rhEPO. Characterization of the glycosylation status of rhEPO is of great importance for quality control. In this study, we established a fast and comprehensive approach for reliable characterization and relative quantitation of rhEPO glycosylation, which combines multiple-enzyme digestion, hydrophilic-interaction chromatography (HILIC) enrichment of glycopeptides, and tandem mass spectrometry (MS) analysis. The N-linked and O-linked intact glycopeptides were analyzed with high-resolution and high-accuracy (HR–AM) mass spectrometry using an Orbitrap. In total, 74 intact glycopeptides from four glycosylation sites at N24, N38, N83, and O126 were identified, with the simultaneous determination of peptide sequences and glycoform compositions. The extracted ion chromatograms based on the HR–AM data enabled relative quantification of glycoforms. Our results could be extended to quality control of rhEPO or could help establish detection approaches for glycosylation of other proteins. Graphical Abstract
?  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号