首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Cyclometalated IrIII complexes with acetylide ppy and bpy ligands were prepared (ppy=2‐phenylpyridine, bpy=2,2′‐bipyridine) in which naphthal ( Ir‐2 ) and naphthalimide (NI) were attached onto the ppy ( Ir‐3 ) and bpy ligands ( Ir‐4 ) through acetylide bonds. [Ir(ppy)3] ( Ir‐1 ) was also prepared as a model complex. Room‐temperature phosphorescence was observed for the complexes; both neutral and cationic complexes Ir‐3 and Ir‐4 showed strong absorption in the visible range (ε=39600 M ?1 cm?1 at 402 nm and ε=25100 M ?1 cm?1 at 404 nm, respectively), long‐lived triplet excited states (τT=9.30 μs and 16.45 μs) and room‐temperature red emission (λem=640 nm, Φp=1.4 % and λem=627 nm, Φp=0.3 %; cf. Ir‐1 : ε=16600 M ?1 cm?1 at 382 nm, τem=1.16 μs, Φp=72.6 %). Ir‐3 was strongly phosphorescent in non‐polar solvent (i.e., toluene), but the emission was completely quenched in polar solvents (MeCN). Ir‐4 gave an opposite response to the solvent polarity, that is, stronger phosphorescence in polar solvents than in non‐polar solvents. Emission of Ir‐1 and Ir‐2 was not solvent‐polarity‐dependent. The T1 excited states of Ir‐2 , Ir‐3 , and Ir‐4 were identified as mainly intraligand triplet excited states (3IL) by their small thermally induced Stokes shifts (ΔEs), nanosecond time‐resolved transient difference absorption spectroscopy, and spin‐density analysis. The complexes were used as triplet photosensitizers for triplet‐triplet annihilation (TTA) upconversion and quantum yields of 7.1 % and 14.4 % were observed for Ir‐2 and Ir‐3 , respectively, whereas the upconversion was negligible for Ir‐1 and Ir‐4 . These results will be useful for designing visible‐light‐harvesting transition‐metal complexes and for their applications as triplet photosensitizers for photocatalysis, photovoltaics, TTA upconversion, etc.  相似文献   

2.
Organic room temperature phosphorescence (RTP) attracts extensive attentions, but still faces the challenge of achieving both high RTP efficiencies (ηRTP) and long lifetimes (τRTP), due to the intrinsic contradiction between triplet radiation and stabilization. In this work, we developed three carbazole-triphenylphosphine hybrids named xCzTPP, in which phosphine groups provide nonbonding electrons and steric hindrance to modulate intermolecular p-π and π-π interactions. With the rational orientations and spatial positions of functional groups, para-substituted pCzTPP achieves high ηRTP over 10 % and more than twofold increased τRTP (>600 ms), compared to ortho- and meta- isomers. Theoretical simulation and photophysical investigation indicate that the strongest intermolecular p-π and π-π electronic interplays of pCzTPP harmonize high transition probability of 3pπ state and triplet stability of 3ππ state, reflecting the p-π and π-π synergy in RTP process.  相似文献   

3.
Main chain polymeric benzophenone photoinitiator (PBP) was synthesized by using “Thiol‐ene Click Chemistry” and characterized with 1H NMR, FTIR, UV, and phosphorescence spectroscopies. PBP as a polymeric photoinitiator presented excellent absorption properties (ε294 = 28,300 mol?1L?1cm?1) compared to the molecular initiator BP (ε252 = 16,600 mol?1L?1cm?1). The triplet energy of PBP was obtained from the phosphorescence measurement in 2‐methyl tetrahydrofurane at 77 K as 298.3 kJ/mol and according to phosphorescence lifetime, the lowest triplet state of PBP has an n‐π* nature. Triplet–triplet absorption spectrum of PBP at 550 nm following laser excitation (355 nm) were recorded and triplet lifetime of PBP was found as 250 ns. The photoinitiation efficiency of PBP was determined for the polymerization of Hexanedioldiacrylate (HDDA) with PBP and BP in the presence of a coinitiator namely, N‐methyldiethanolamine (MDEA) by Photo‐DSC. The initiation efficiency of PBP for polymerization of HDDA is much higher than for the formulation consisting of BP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
The indanono naphthaleno compounds 1 , 3 , 5 and 7 exhibit, on both irradiation in the 1Lb band (315 nm) and the n → π* transition (> 340 nm) in EPA at 77° K, neither fluorescence from naphthalene nor phosphorescence from indanone, but exclusively phosphorescence from naphthalene, and quenching in liquid solution with 1,3-pentadiene results in triplet energy transfer from the naphthaleno group only. The naphthalene phosphorescence exhibited by the ketones ( 1 , 3 , 5 , 7 ) has an enhanced quantum efficiency with respect to that on direct excitation of the corresponding hydrocarbons ( 2 , 4 , 6 , 8 ) and more strongly in the exo than in the endo orientation. In order to account for the energy wasting in the intramolecular triplet energy transfer in the endo compounds, a transfer route via a weak triplet donor-acceptor exciplex, specific to through-space interaction in the endo configuration (providing for additional radiationless T → S energy dissipation through vibrational coupling), competing with an efficient through-σ-bond exchange transfer mechanism operative in both configurations is proposed.  相似文献   

5.
The small Stokes shift and weak emission in the solid state are two main shortcomings associated with the boron-dipyrromethene (BODIPY) family of dyes. This study presents the design, synthesis and luminescent properties of boron difluoro complexes of 2-aryl-5-alkylamino-4-alkylaminocarbonylthiazoles. These dyes display Stokes shifts (Δλ, 77–101 nm) with quantum yields (ϕFL) up to 64.9 and 34.7 % in toluene solution and in solid state, respectively. Some of these compounds exhibit dual fluorescence and room-temperature phosphorescence (RTP) emission properties with modulable phosphorescence quantum yields (ϕPL) and lifetime (τp up to 251 μs). The presence of intramolecular H-bonds and negligible π-π stacking revealed by X-ray crystal structure might account for the observed large Stokes shift and significant solid-state emission of these fluorophores, while the enhanced spin-orbit coupling (SOC) of iodine and the self-assembly driven by halogen bonding, π-π and C−Hπ interactions could be responsible for the observed RTP of iodine containing phosphors.  相似文献   

6.
Abstract— The lowest excited singlet-state dissociation constants (pKSa) of bromosubstituted pyridines, quinolines, and isoquinolines were determined from the pH-dependent shifts in their electronic absorption spectra. The lowest excited triplet-state dissociation constants (pKTa) of bromosubstituted quinolines and 4-bromoisoquinoline were obtained from the shifts of the 0–0 phosphorescence bands measured in rigid aqueous solution at 77 K. The pKSa values indicate that the basicity of these brominated nitrogen heterocycles is increased in the lowest excited singlet state by 2 to 10 orders of magnitude as compared with the ground state. The pKTa values are found to be significantly different from the corresponding ground-state pKa values, indicating that the basicity of bromoquinolines is increased in the lowest excited triplet state by 1.7 to 3.0 pK units. The enhancement of the excited singlet-and triplet-state basicity of brominated nitrogen heterocycle derivatives as compared with the unsuhstituted parent compounds is attributed to the increased electron-donor conjugative interactions of the bromine atom pπ orbitals with π orbitals in the lowest excited singlet and triplet state.  相似文献   

7.
Room‐temperature long‐lived near‐IR phosphorescence of boron‐dipyrromethene (BODIPY) was observed (λem=770 nm, ΦP=3.5 %, τP=128.4 μs). Our molecular‐design strategy is to attach PtII coordination centers directly onto the BODIPY π‐core using acetylide bonds, rather than on the periphery of the BODIPY core, thus maximizing the heavy‐atom effect of PtII. In this case, the intersystem crossing (ISC) is facilitated and the radiative decay of the T1 excited state of BODIPY is observed, that is, the phosphorescence of BODIPY. The complex shows strong absorption in the visible range (ε=53800 M ?1 cm?1 at 574 nm), which is rare for PtII–acetylide complexes. The complex is dual emissive with 3M LCT emission at 660 nm and the 3IL emission at 770 nm. The T1 excited state of the complex is mainly localized on the BODIPY moiety (i.e. 3IL state, as determined by steady‐state and time‐resolved spectroscopy, 77 K emission spectra, and spin‐density analysis). The strong visible‐light‐harvesting ability and long‐lived T1 excite state of the complex were used for triplet‐triplet annihilation based upconversion and an upconversion quantum yield of 5.2 % was observed. The overall upconversion capability (η=ε×ΦUC) of this complex is remarkable considering its strong absorption. The model complex, without the BODIPY moiety, gives no upconversion under the same experimental conditions. Our work paves the way for access to transition‐metal complexes that show strong absorption of visible light and long‐lived 3IL excited states, which are important for applications in photovoltaics, photocatalysis, and upconversions, etc.  相似文献   

8.
Anion-π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long-distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation-π biocatalysis, reported here is the anion-π-catalyzed epoxide-opening ether cyclizations of oligomers. Only on π-acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m −1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks-type substrate concentration dependence, entropy-centered substrate destabilization) and opens intriguing perspectives for future developments.  相似文献   

9.
The UV absorption, phosphorescence and phosphorescence‐excitation spectra of benzophenone (BP) derivatives used as organic UV absorbers have been observed in rigid solutions at 77 K. The triplet–triplet absorption spectra have been observed in acetonitrile at room temperature. The BP derivatives studied are 2,2′,4,4′‐tetrahydroxybenzophenone (BP‐2), 2‐hydroxy‐4‐methoxybenzophenone (BP‐3), 2,2′‐dihydroxy‐4,4′‐dimethoxybenzophenone (BP‐6), 5‐chloro‐2‐hydroxybenzophenone (BP‐7) and 2‐hydroxy‐4‐n‐octyloxybenzophenone (BP‐12). The energy levels and lifetimes of the lowest excited triplet (T1) states of these BP derivatives were determined from the first peak of phosphorescence. The time‐resolved near‐IR emission spectrum of singlet oxygen generated by photosensitization with BP‐7 was observed in acetonitrile at room temperature. BP‐2, BP‐3, BP‐6 and BP‐12 show photoinduced phosphorescence enhancement in ethanol at 77 K. The possible mechanism of the observed phosphorescence enhancement is discussed. The T1 states of 2‐hydroxy‐5‐methylbenzophenone, 4‐methoxybenzophenone and 2,4′‐dimethoxybenzophenone have been studied for comparison.  相似文献   

10.
Thioxanthone‐based 9‐(2‐Morpholine‐4yl‐acetyl)‐5‐thia‐napthasen‐12‐one (TX‐MPM) was synthesized and characterized as a one‐component novel visible photoinitiator. Its capability to act as an initiator for the polymerization of methyl methacrylate (MMA) was examined in photoreactor and also daylight. Photophysical properties: fluorescence and phosphorescence emission spectra and fluorescence quantum yield of TX‐MPM (?f = 0.29) were determined. The phosphorescence lifetime was found 131 ms for TX‐MPM and 110 ms for initiator‐attached polymer (PMMA) at 77 K, indicated a π→π* nature of the lowest triplet state. A model compound, morpholino acetonapthone was used as quencher for the triplet states of TX‐MPM and the quenching rate constant was determined (kq = 1.26 × 109 M?1s?1). According to laser flash photolysis studies, intermolecular hydrogen abstraction process was more dominant path to the formation of the initiating radicals. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Luminescent ZnII clusters [Zn4L43-OMe)2X2] (X=SCN ( 1 ), Cl ( 2 ), Br ( 3 )) and [Zn7L63-OMe)23-OH)4]Y2 (Y=I ( 4 ), ClO4 ( 5 )), HL=methyl-3-methoxysalicylate, exhibiting blue fluorescence at room temperature (λmax=416≈429 nm, Φem=0.09–0.36) have been synthesised and investigated in detail. In one case the external heavy-atom effect (EHE) arising the presence of iodide counter anions yielded phosphorescence with a long emission lifetime (λmax=520 nm, τ=95.3 ms) at 77 K. Single-crystal X-ray structural analysis and time-dependent density-functional theory (TD-DFT) calculations revealed that their emission origin was attributed to the fluorescence from the singlet ligand-centred (1LC) excited state, and the phosphorescence observed in 4 was caused by the EHE of counter anions having strong CH−I interactions.  相似文献   

12.
Summary Radiative decay and phosphorescence of triplet stare benzene is doubly -orbital and spin- forbidden and is only activated through vibronic coupling among the manifold of triplet states. For this reason the determination of lifetime and transition moments for the decay of triplet benzene has posed a considerable challenge to both theory and experiment. In the present work we have addressed the triplet benzene problem at several levels of theory; by truncated perturbation theory and semiempirical, CNDO/S-CI, calculations; by complete sum-over-state calculations as implemented in recentab initio multiconfiguration quadratic response (MCQR) theory; and by direct MCQR calculations of vibronic phosphorescence. The vibronic coupling is in the two former cases treated by the Herzberg-Teller (H-T) perturbation theory, involving four main mechanisms for the phosphorescent decay of triplet benzene. The results and interpretations given by these approaches as well as their merits and limitations are presented and discussed in some detail. Our calculations indicate that the phosphorescent decay of the3 B 1u state takes place predominantly through vibronic coupling along thee 2g mode. We obtain a phosphorescence that is almost completely out-of-plane polarized, which is in line with more recent measurements by the microwave-induced delayed phosphorescence technique, and could reproduce quite well the intensity ratios for different vibronic bands obtained in that experiment. The final triplet state lifetime is the result of a delicate sum of contributions from several vibronic degenerate and non-degenerate modes. The direct vibronic phosphorescence calculations predict a long lifetime, about one minute — 68 seconds for the best wavefunction — and seem to focus on a doubling of the assumed, albeit not established, best experimental value for the radiative lifetime of triplet benzene; 30 seconds.Dedicated to Inga Fischer-Hjalmars on her 75th birthday  相似文献   

13.
Perfluorinated cycloparaphenylenes (F-[n]CPP, n = 5–8), boron nitride nanohoop (F-[5]BNNH), and buckybowls (F-BBs) were proposed as anion receptors via anion-π interactions with halide anions (Cl, Br and I), and remarkable binding strengths up to −294.8 kJ/mol were computationally verified. The energy decomposition approach based on the block-localized wavefunction method, which combines the computational efficiency of molecular orbital theory and the chemical intuition of ab initio valence bond theory, was applied to the above anion-π complexes, in order to elucidate the nature and selectivity of these interactions. The overall attraction is mainly governed by the frozen energy component, in which the electrostatic interaction is included. Remarkable binding strengths with F-[n]CPPs can be attributed to the accumulated anion-π interactions between the anion and each conjugated ring on the hoop, while for F-BBs, additional stability results from the curved frameworks, which distribute electron densities unequally on π-faces. Interestingly, the strongest host was proved to be the F-[5]BNNH, which exhibits the most significant anisotropy of the electrostatic potential surface due to the difference in the electronegativities of nitrogen and boron. The selectivity of each host for anions was explored and the importance of the often-overlooked Pauli exchange repulsion was illustrated. Chloride anion turns out to be the most favorable anion for all receptors, due to the smallest ionic radius and the weakest destabilizing Pauli exchange repulsion.  相似文献   

14.
Abstract. The phosphorescence of poly rA at 77 K in an aqueous medium containing glucose is half-quenched by bound ethidium bromide at a fractional concentration, r1/2, of 0.005, and by bound proflavine at r1/2= 0.002: r1/2= 0.024 for Co2+ and r1/2= 0.039 for Mn2+. The decay of the dye-quenched poly rA phosphorescence is markedly nonexponential and decays more rapidly with increasing dye concentration, while the decay of the metal-ion quenched poly rA phosphorescence parallels that of the unquenched poly rA, independent of metal-ion concentration. Förster overlap integrals and critical distances for transfer of both poly rA singlet and triplet excitation to dye singlet states are calculated, and used to explain a consistent interpretation of the experimental results in terms of one-step direct excitation transfer from base to dye or metal ion in a highly folded polymer conformation.  相似文献   

15.
Anion-π catalysis operates by stabilizing anionic transition states on π-acidic aromatic surfaces. In anion-(π)n-π catalysis, π stacks add polarizability to strengthen interactions. In search of synthetic methods to extend π stacks beyond the limits of foldamers, the self-assembly of micelles from amphiphilic naphthalenediimides (NDIs) is introduced. To interface substrates and catalysts, charge-transfer complexes with dialkoxynaphthalenes (DANs), a classic in supramolecular chemistry, are installed. In π-stacked micelles, the rates of bioinspired ether cyclizations exceed rates on monomers in organic solvents by far. This is particularly impressive considering that anion-π catalysis in water has been elusive so far. Increasing rates with increasing π acidity of the micelles evince operational anion-(π)n-π catalysis. At maximal π acidity, autocatalytic behavior emerges. Dependence on position and order in confined micellar space promises access to emergent properties. Anion-(π)n-π catalytic micelles in water thus expand supramolecular systems catalysis accessible with anion-π interactions with an inspiring topic of general interest and great perspectives.  相似文献   

16.
《Chemical physics》2005,315(3):215-239
Geometrical structure of free-base porphin (H2P) and Mg- and Zn-porphyrins together with their vibrational frequencies and vibronic intensities in phosphorescence are investigated by density functions theory (DFT) with the standard B3LYP functional. These molecules have a closed-shell singlet ground state (S0) and low-lying triplet (T1) excited states of ππ* type. The S0–T1 transition probability and radiative lifetime of phosphorescence (τp) of these molecules are calculated by time-dependent DFT utilizing quadratic response functions for account of spin–orbit coupling (SOC) and electric-dipole transition moments including displacements along active vibrational modes. The infrared and Raman spectra in the ground singlet and first excited triplet states are also studied for proper assignment of vibronic patterns. The long radiative lifetime of free-base porphin phosphorescence (τp  360 s at low temperature limit, 4.2 K) gets considerably shorter for the metalloporphyrins. An order of magnitude reduction of τp is predicted for Mg-porphyrin but no change of phosphorescence polarization is found. A forty times enhancement of the radiative phosphorescence rate constant is obtained for Zn-porphyrin in comparison with the H2P molecule which is accompanied by a strong change of polarization and spin-sublevel radiative activity. A strong vibronic activity of free-base porphin phosphorescence is found for the b2g mode at 430 cm−1, while the 679 and 715 cm−1 vibronic bands of b3g symmetry are less active. These and other out-of-plane vibrations produce considerable changes in the radiative constants of different spin sublevels of the triplet state; they also promote the S1  T1 intersystem crossing. Among the in-plane vibrations the ag mode at 1614 cm−1 is found very active; it produces a long progression in the phosphorescence spectrum. The time-dependent DFT calculations explain the effects of the transition metal atom on phosphorescence of porphyrins and reproduce differences in their phosphorescence and EPR spectra.  相似文献   

17.
In this study, the electronic structures and optical properties of a cyclometalated Pt(II) complex (M1) and a series of derivatives (M1–F, M1–CF3, and M1–CN) with electron-withdrawing substituents (–F, –CF3, and –CN) at the carbazole moiety were theoretically investigated by density functional theory and time-dependent density functional theory. The calculation results reveal that these Pt complexes display deep red phosphorescence emission above Λ = 640 nm. When the 3MLCT/π → π* to triplet metal-centered 3MC/d–d state decay mechanism is taken into consideration, the nonradiative decay rate constant (knr) decreased in the order M1 > M1–CF3 > M1–F > M1–CN. The <T1|HSOC|Sm> and kr values of M1-F are similar with those of M1, however the Knr rate ofM1-F is larger than that of M1. M1–F is expected to have improved quantum yields. Moreover, through the analyses of the HOMO/LUMO level and triplet energy, it is found that the introduction of –F and –CN substituents in M1 results in efficient energy transfer from the host material 4,4′-N,N′-dicarbazole-biphenyl to these complexes. In view of the electroluminescent applications in organic light-emitting diodes, M1–F can serve as efficient deep-red guest materials with improved electron injection and transport ability.  相似文献   

18.
The influence of the external TI+ “heavy” ion on the singlet and triplet excited states of the pyrene and Trypaflavine molecules solubilized in the water-heptane-sodium dodecyl sulfate-pentanol microemulsion was studied. The triplet-triplet (T-T) energy transfer in the system Trypaflavine (donor)-pyrene (acceptor) and the sensitized phosphorescence of pyrene were first observed in the microemulsion containg Tl+ ions. The quenching rate constants of the excited states of the luminophores by Tl+ ions were calculated. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1529–1532, September, 2000.  相似文献   

19.
The synthesis of a bithiophene‐bridged 34π conjugated aromatic expanded porphycene 1 and a cyclopentabithiophene bridged 32π conjugated anti‐aromatic expanded porphycene 2 by a McMurry coupling strategy is presented. Magnetic measurements and theoretical calculations reveal that both 1 and 2 exhibit an open‐shell singlet ground state with significant radical character (y0=0.63 for 1 ; y0=0.68, y1=0.18 for 2 ; y0: diradical character, y1: tetraradical character) and a small singlet–triplet energy gap (ΔES‐T=?3.25 kcal mol?1 for 1 and ΔES‐T=?0.92 kcal mol?1 for 2 ). Despite the open‐shell radical character, both compounds display exceptional stability under ambient air and light conditions owing to effective delocalization of unpaired electrons in the extended cyclic π‐conjugation pathway.  相似文献   

20.
A series of sterically encumbered [Pt( L )(σ‐acetylide)2] complexes were prepared in which L , a dendritic polyaromatic diimine ligand, was held constant ( L =1‐(2,2′‐bipyrid‐6‐yl)‐2,3,4,5‐tetrakis(4‐tert‐butylphenyl)benzene) and the cis ethynyl co‐ligands were varied. The optical properties of the complexes were tuned by changing the electronic character, extent of π conjugation and steric bulk of the ethynyl ligands. Replacing electron‐withdrawing phenyl‐CF3 substituents ( 4 ) with electron‐donating pyrenes ( 5 ) resulted in a red shift of both the lowest‐energy absorption (ΔE=3300 cm?1, 61 nm) and emission bands (ΔE=1930 cm?1, 64 nm). The emission, assigned in each case as phosphorescence on the basis of the excited‐state lifetimes, switched from being 3MMLL′CT‐derived (mixed metal–ligand‐to‐ligand charge transfer) when phenyl/polyphenylene substituents ( 3 , 4 , 6 ) were present, to ligand‐centred 3ππ* when the substituents were more conjugated aromatic platforms [pyrene ( 5 ) or hexa‐peri‐hexabenzocoronene ( 7 )]. The novel PtII acetylide complexes 5 and 7 absorb strongly in the visible region of the electromagnetic spectrum, which along with their long triplet excited‐state lifetimes suggested they would be good candidates for use as singlet‐oxygen photosensitisers. Determined by in situ photooxidation of 1,5‐dihydroxynaphthalene (DHN), the photooxidation rate with pyrenyl‐ 5 as sensitiser (kobs=39.3×10?3 min?1) was over half that of the known 1O2 sensitiser tetraphenylporphyrin (kobs=78.6×10?3 min?1) under the same conditions. Measured 1O2 quantum yields of complexes 5 and 7 were half and one‐third, respectively, of that of TPP, and thus reveal an efficient triplet–triplet energy‐transfer process in both cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号