首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Resolution of resources and environmental crises requires an efficient separation technologies, consequently, scientists and engineers are working vigorously for ideal separation materials. Laminar graphene oxide (GO) is a two‐dimensional (2D) material offers considerable interest in this field due to its single atomic layer thickness, good stability, chemical inertness, and variety of functional groups. Recently, GO have emerged as a novel membrane material for molecular and ionic separation of gases, solvent, water, and desalination applications. This tutorial review aims to discuss the various approaches used to control the stacking of GO‐based membrane with emphasis of advantages and drawbacks associated with each approach. Further, attention will also be given to describe the recent progress in GO based membranes for ionic and molecular separations. Meanwhile, challenges and opportunities will also be discussed in detail. We hope this review expected to provide a compact source of information that will be of great interest to chemists, material scientists, physicists, and engineers working or planning to work in GO based membranes for separation applications.  相似文献   

2.
Ultrathin covalent organic framework (COF) membranes are urgently demanded in molecular/ionic separations. Herein, we reported an electrochemical interfacial polymerization strategy to fabricate ultrathin COF membranes with thickness of 85 nm, by actively manipulate self-healing effect and self-inhibiting effect. The resulting COF membrane exhibited superior performance in brine desalination with the permeation flux of 92 kg m−2 h−1 and the rejection of 99.96 %. Our electrochemical interfacial polymerization strategy enriches the fabrication approach of COF membranes and facilitates the rational design of ultrathin membranes.  相似文献   

3.
Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO2 to implement efficient separations, gas separation membranes containing CO2‐philic and non‐CO2‐philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO2‐philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non‐CO2‐philic nanodomains, rendering low‐friction diffusion. Owing to the orderly stacking of nanochannels through cross‐linking and the heterogeneous nanodomains with moderate CO2 affinity, a GO‐PEGDA500 membrane exhibits a high CO2 permeance of 175.5 GPU and a CO2/CH4 selectivity of 69.5, which is the highest performance reported for dry‐state GO‐stacking membranes.  相似文献   

4.
采用层层自组装法在改性聚丙烯腈(PAN)膜表面交替沉积聚乙烯亚胺(PEI)和聚丙烯酸-氧化石墨烯(PAA-GO)混合液,制得了单价离子选择性复合膜。X射线衍射(XRD)测试结果表明成功合成了氧化石墨烯(GO)并在复合膜中均匀分散。扫描电镜(SEM)观察结果证实了多层聚电解质PEI/PAA-GO成功地组装在基膜上,并用紫外-可见(UV-Vis)光谱进一步证实了组装过程的均匀性和连续性。接触角和性能测试表明加入GO后,复合膜的亲水性和单价阳离子的选择性明显增大。这种高通量、高选择性的防污复合膜在分离和水的软化方面有很好的应用前景。  相似文献   

5.
Protein channels on the biofilm conditionally manipulate ion transport via regulating the distribution of charge residues, making analogous processes on artificial membranes a hot spot and challenge. Here, we employ metal–organic frameworks (MOFs) membrane with charge-adjustable subnano-channel to selectively govern ion transport. Various valent ions are binded with crown ethers embedded in the MOF cavity, which act as charged guest to regulate the channels’ charge state from the negativity to positivity. Compared with the negatively charged channel, the positive counterpart obviously enhances Li+/Mg2+ selectivity, which benefit from the reinforcement of the electrostatic repulsion between ions and the channel. Meanwhile, theoretical calculations reveal that Mg2+ transport through the more positively charged channel needed to overcome higher entrance energy barrier than that of Li+. This work provides a subtle strategy for ion-selective transport upon regulating the charge state of insulating membrane, which paves the way for the application like seawater desalination and lithium extraction from salt lakes.  相似文献   

6.
A defect‐free zeolitic imidazolate framework‐8 (ZIF‐8)/graphene oxide (GO) membrane with a thickness of 100 nm was prepared using two‐dimensional (2D) ZIF‐8/GO hybrid nanosheets as seeds. Hybrid nanosheets with a suitable amount of ZIF‐8 nanocrystals were essential for producing a uniform seeding layer that facilitates fast crystal intergrowth during membrane formation. Moreover, the seeding layer acts as a barrier between two different synthesis solutions, and self‐limits crystal growth and effectively eliminates defects during the contra‐diffusion process. The resulting ultrathin membranes show excellent molecular sieving gas separation properties, such as with a high CO2/N2 selectivity of 7.0. This 2D nano‐hybrid seeding strategy can be readily extended to the fabrication of other defect‐free and ultrathin MOF or zeolite molecular sieving membranes for a wide range of separation applications.  相似文献   

7.
Widely presented nitrite in drinking water, food and even physiological system endangers human health. Here,bare gold nanoparticles functionalized Zr-based metal-organic framework modified reduced graphene oxide (GNPs/UiO-66-NH2/rGO) nanocomposites were prepared by hydrothermal method. This experiment studies the morphology, composition, structure and electrochemical behavior of the sensor. The experimental results show that the sensor has a peak potential of 0.9 V, the concentration range of NO2 is 5.0 μM to 768 μM, the linear regression equation of the calibration curve is Ipa=0.3646+0.00642 C (R2=0.9998), and the LOD is as low as 3.7 μM (S/N=3). Therefore, an electrochemical sensor platform for trace detection of NO2 was successfully constructed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号