共查询到20条相似文献,搜索用时 0 毫秒
1.
Dr. Hang Yang Sunan Bao Naizhe Cui Hongyu Fan Kewei Hu Prof. Chaohua Cui Prof. Yongfang Li 《Angewandte Chemie (International ed. in English)》2023,62(6):e202216338
On the premise of strongly crystalline materials involved, it is a challenge to control the phase separation of bulk-heterojunction donor/acceptor active layer to fabricate high-performance polymer solar cells (PSCs). Herein, we develop a molecular design strategy of the third component to synthesize three guest materials (namely BTPT, BTP-Th, and BTP-2Th) to address this issue. We investigate and reveal the effect of crystallinity and miscibility of the third component in controlling the phase separation of Y6-derivatives-based blend film. As a result, a remarkable power-conversion efficiency of 18.53 % is obtained in the ternary PSC based on PTQ10 : m-BTP-PhC6 with BTP-Th as the third component, which is a significant improvement with regard to the efficiency of 17.22 % for the control binary device. Our study offers a molecular design strategy to develop a third component for building ternary PSCs in terms of crystallinity and miscibility regulation. 相似文献
2.
Dr. Runnan Yu Rui Shi Zhangwei He Tao Zhang Shuang Li Qianglong Lv Shihao Sha Prof. Chunhe Yang Prof. Jianhui Hou Prof. Zhan'ao Tan 《Angewandte Chemie (International ed. in English)》2023,62(40):e202308367
Fine-tuning the thermodynamic self-assembly of molecules via volatile solid additives has emerged to be an effective way to construct high-performance organic solar cells. Here, three-dimensional structured solid molecules have been designed and applied to facilitate the formation of organized molecular assembly in the active layer. By means of systematic theory analyses and film-morphology characterizations based on four solid candidates, we preselected the optimal one, 4-fluoro-N,N-diphenylaniline (FPA), which possesses good volatility and strong charge polarization. The three-dimensional solids can induce molecular packing in active layers via strong intermolecular interactions and subsequently provide sufficient space for the self-reassembly of active layers during the thermodynamic transition process. Benefitting from the optimized morphology with improved charge transport and reduced energy disorder in the FPA-processed devices, high efficiencies of over 19 % were achieved. The strategy of three-dimensional additives inducing ordered self-assembly structure represents a practical approach for rational morphology control in highly efficient devices, contributing to deeper insights into the structural design of efficient volatile solid additives. 相似文献
3.
Chen Zhang Jiali Song Jingwei Xue Shijie Wang Zhongwei Ge Yuheng Man Prof. Wei Ma Prof. Yanming Sun 《Angewandte Chemie (International ed. in English)》2023,62(40):e202308595
Oligomer acceptors have recently emerged as promising photovoltaic materials for achieving high power conversion efficiency (PCE) and long-term stability in organic solar cells (OSCs). However, the limited availability of diverse acceptors, resulting from the sole synthetic approach, has hindered their potential for future industrialization. In this study, we present a facile and effective stepwise approach that utilizes two consecutive Stille coupling reactions for the synthesis of oligomer acceptors. To demonstrate the feasibility of the novel approach, we successfully synthesize a trimer acceptor, Tri-Y6-OD, and further systematically investigate the impact of oligomerization on device performance and stability. The results reveal that this approach has significant advantages compared to the conventional method, including reduced formation of unwanted by-products and lower difficulties in purification. Remarkably, the OSC based on PM6 : Tri-Y6-OD achieves an impressive PCE of 18.03 % and maintains 80 % of the initial PCE (T80) for 1523 h under illumination, surpassing the performance of the corresponding small molecule acceptor Y6-OD-based device. Furthermore, the versatility of the synthetic strategy in obtaining diverse acceptors is further demonstrated. Overall, our findings provide a facile, versatile and stepwise way for synthesizing oligomer acceptors, thereby facilitating the development of stable and efficient OSCs. 相似文献
4.
Xiaobin Gu Prof. Xin Zhang Prof. Hui Huang 《Angewandte Chemie (International ed. in English)》2023,62(46):e202308496
Organic solar cells (OSCs) have attracted wide research attention in the past decades. Very recently, oligomerized fused-ring electron acceptors (OFREAs) have emerged as a promising alternative to small-molecular/polymeric acceptor-based OSCs due to their unique advantages such as well-defined structures, batch reproducibility, good film formation, low diffusion coefficient, and excellent stability. So far, rapid advances have been made in the development of OFREAs consisting of directly/rigidly/flexibly linked oligomers and fused ones. In this Minireview, we systematically summarized the recent research progress of OFREAs, including structural diversity, synthesis approach, molecular conformation and packing, and long-term stability. Finally, we conclude with future perspectives on the challenges to be addressed and potential research directions. We believe that this Minireview will encourage the development of novel OFREAs for OSC applications. 相似文献
5.
Prof. Guan-E Wang Guo-Bin Xiao Cong-Ping Li Dr. Zhi-Hua Fu Prof. Jing Cao Prof. Gang Xu 《Angewandte Chemie (International ed. in English)》2023,62(51):e202313833
Directional defects management in polycrystalline perovskite film with inorganic passivator is highly demanded while yet realized for fabricating efficient and stable perovskite solar cells (PSCs). Here, we develop a directional passivation strategy employing a two-dimensional (2D) material, Cu-(4-mercaptophenol) (Cu-HBT), as a passivator precursor. Cu-HBT combines the merits of the targeted modification from organic passivator and excellent stability offered by inorganic passivator. Featuring with dense organic functional motifs on its surfaces, Cu-HBT has the capability to “find” and fasten to the Pb defect sites in perovskites through coordination interactions during a spin-coating process. During subsequent annealing treatment, the organic functional motifs cleave from Cu-HBT and convert in situ into p-type semiconductors, Cu2S and PbS. The resultant Cu2S and PbS not only serve as stable inorganic passivators on the perovskite surface, significantly enhancing cell stability, but also facilitate efficient charge extraction and transport, resulting in an impressive efficiency of up to 23.5 %. This work contributes a new defect management strategy by directionally yielding the stable inorganic passivators for highly efficient and stable PSCs. 相似文献
6.
Meizi Wu Hongyan Wang Yong Li Dr. Ran Chen Hui Zhou Shaomin Yang Dongfang Xu Kun Li Prof. Dr. Zhongwei An Shengzhong Liu Prof. Dr. Zhike Liu 《Angewandte Chemie (International ed. in English)》2023,62(52):e202313472
It is found that the disordered growth of bottom perovskite film deteriorates the buried interface of perovskite solar cells (PSCs), so developing a new material to modify the buried interface for regulating the crystal growth and defect passivation is an effective approach for improving the photovoltaic performance of PSCs. Here, we developed a new ionic liquid crystal (ILC, 1-Dodecyl-3-methylimidazolium tetrafluoroborate) as both crystal regulator and defect passivator to modify the buried interface of PSCs. The high lattice matching between this ILC and perovskite promotes preferential growth of perovskite film along [001] direction, while the oriented ILC with mesomorphic phase has a strong chemical interaction with perovskite to passivate the interface defect, as a result, the modified buried interface exhibits suppressed defects, improved band alignment, reduced nonradiative recombination losses, and enhanced charge extraction. The ILC-modified PSC delivers a power conversion efficiency of 24.92 % and maintains 94 % of the original value after storage in ambient for 3000 h. 相似文献
7.
Rui Wang Xiyue Dong Qin Ling Ziyang Hu Yuping Gao Yu Chen Yongsheng Liu 《Angewandte Chemie (International ed. in English)》2023,62(50):e202314690
The conjugated organic semiconductor spacers have drawn wide attention in two-dimensional (2D) perovskites and formamidinium (FA) has been widely used as A-site cation in high-performance 3D perovskite solar cells (PSCs). However, the FA-based semiconductor spacers have rarely been investigated in 2D Ruddlesden-Popper (RP) perovskites. Here, we developed two FA-based spacers containing thieno[3,2-b]thiophene (TT) and 2,2′-bithiophene (BT) units, namely TTFA and BTFA, respectively, for 2D RP PSCs. The nucleation and crystallization kinetics of TTFA-Pb and BTFA-Pb from sol-gel to film were investigated using in situ optical microscopy and in situ grazing incidence wide-angle X-ray scattering (GIWAXS) measurements. It is found that the TTFA spacer could reduce the energy barrier of nucleation and induces crystal vertical orientation of 2D perovskite by forming larger clusters in precursor solution, resulting in much improved film quality. Benefiting from the enlarged crystal grains, reduced exciton binding energy, and decreased electron-phonon coupling coefficient, the photovoltaic device based on (TTFA)2MAn−1PbnI3n+1 (n=5) achieved a champion efficiency of 19.41 %, which is a record for 2D RP PSCs with FA-based spacers. Our work provides deep understanding of the nucleation and crystallization process of 2D RP perovskite films and highlights the great potential of FA-based semiconductor spacers in highly efficient 2D PSCs. 相似文献
8.
Zuhao You Yanan Song Wenxu Liu Wenlong Wang Chenghao Zhu Yuxin Duan Yao Liu 《Angewandte Chemie (International ed. in English)》2023,62(23):e202302538
Electroactive ionenes combining caged-shaped diazabicyclic cations and aromatic diimides were developed as interlayers in organic solar cells (OSCs). These ionenes reduce the work-function of air-stable metal electrodes (e.g., Ag, Cu and Au) by generating strong interfacial dipoles, and their optoelectronic and morphological characters can be modulated by aromatic diimides, leading to high conductivity and good compatibility with active layers. The optimal ionene exhibits superior charge-transport, desirable crystallinity, and weak visible-absorption, boosting the efficiency of benchmark PM6 : Y6-based OSCs up to 17.44 %. The corresponding normal devices show excellent stability at maximum power point test under one sun illumination for 1000 h. Replacing Y6 with L8-BO promotes the efficiency to 18.43 %, one of the highest in binary OSCs. Notably, high efficiencies >16 % are maintained as the interlayer thickness increasing to 105 nm, the best result with interlayer-thickness over 100 nm. 相似文献
9.
Bingqian Zhang Chen Chen Xianzhao Wang Xiaofan Du Dachang Liu Xiuhong Sun Zhipeng Li Lianzheng Hao Caiyun Gao Yimeng Li Zhipeng Shao Xiao Wang Prof. Guanglei Cui Prof. Shuping Pang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2023,135(2):e202213478
Metal-cation defects and halogen-anion defects in perovskite films are critical to the efficiency and stability of perovskite solar cells (PSCs). In this work, a random polymer, poly(methyl methacrylate-co-acrylamide) (PMMA-AM), was synthesized to serve as an interfacial passivation layer for synergistically passivating the under-coordinated Pb2+ and anchor the I- of the [PbI6]4− octahedron. Additionally, the interfacial PMMA-AM passivation layer cannot be destroyed during the hole transport layer deposition because of its low solubility in chlorobenzene. This passivation leads to an enhancement in the open-circuit voltage from 1.12 to 1.22 V and improved stability in solar cell devices, with the device maintaining 95 % of the initial power conversion efficiency (PCE) over 1000 h of maximum power point tracking. Additionally, a large-area solar cell module was fabricated using this approach, achieving a PCE of 20.64 %. 相似文献
10.
Yumeng Xu Dr. Xing Guo Prof. Zhenhua Lin Qingrui Wang Prof. Jie Su Prof. Jincheng Zhang Prof. Yue Hao Prof. Keke Yang Prof. Jingjing Chang 《Angewandte Chemie (International ed. in English)》2023,62(33):e202306229
Perovskite solar cells (PSCs) are considered as a promising photovoltaic technology due to their high efficiency and low cost. However, their long-term stability, mechanical durability, and environmental risks are still unable to meet practical needs. To overcome these issues, we designed a multifunctional elastomer with abundant hydrogen bonds and carbonyl groups. The chemical bonding between polymer and perovskite could increase the growth activation energy of perovskite film and promote the preferential growth of high-quality perovskite film. Owing to the low defect density and gradient energy-level alignment, the corresponding device exhibited a champion efficiency of 23.10 %. Furthermore, due to the formation of the hydrogen-bonded polymer network in the perovskite film, the target devices demonstrated excellent air stability and enhanced flexibility for the flexible PSCs. More importantly, the polymer network could coordinate with Pb2+ ions, immobilizing lead atoms to reduce their release into the environment. This strategy paves the way for the industrialization of high-performance flexible PSCs. 相似文献
11.
This personal account describes the pursuit of non‐fullerene acceptors designed from simple and accessible organic pi‐conjugated building blocks and assembled through efficient direct (hetero)arylation cross‐coupling protocols. Initial materials development focused on isoindigo and diketopyrrolopyrrole organic dyes flanked by imide‐based terminal acceptors. Efficiencies in solution‐processed organic solar cells were modest but highlighted the potential of the material design. Materials performance was improved through structural engineering to pair perylene diimide with these organic dyes. Optimization of active layer processing and solar cell device fabrication identified the perylene diimide flanked diketopyrrolopyrrole structure as the best framework, with fullerene‐free organic solar cells achieving power conversion efficiencies above 6 %. This material has met our criteria for a simple wide band gap fullerene alternative for pairing with a range of donor polymers. 相似文献
12.
Feng Qi Dr. Yanxun Li Dr. Rui Zhang Dr. Francis R. Lin Dr. Kaikai Liu Dr. Qunping Fan Prof. Alex K.-Y. Jen 《Angewandte Chemie (International ed. in English)》2023,62(21):e202303066
Organic solar cells (OSCs) have advanced rapidly due to the development of new photovoltaic materials. However, the long-term stability of OSCs still poses a severe challenge for their commercial deployment. To address this issue, a dimer acceptor (dT9TBO) with flexible linker is developed for incorporation into small-molecule acceptors to form molecular alloy with enhanced intermolecular packing and suppressed molecular diffusion to stabilize active layer morphology. Consequently, the PM6 : Y6 : dT9TBO-based device displays an improved power conversion efficiency (PCE) of 18.41 % with excellent thermal stability and negligible decay after being aged at 65 °C for 1800 h. Moreover, the PM6 : Y6 : dT9TBO-based flexible OSC also exhibits excellent mechanical durability, maintaining 95 % of its initial PCE after being bended repetitively for 1500 cycles. This work provides a simple and effective way to fine-tune the molecular packing with stabilized morphology to overcome the trade-off between OSC efficiency and stability. 相似文献
13.
Xucong Liu Zhou Zhang Dr. Chao Wang Cuifen Zhang Shijie Liang Haisheng Fang Bo Wang Prof. Zheng Tang Dr. Chengyi Xiao Prof. Weiwei Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(1):e202316039
A pyrene-fused dimerized electron acceptor has been successfully synthesized and subsequently incorporated as the third component in ternary organic solar cells (OSCs). Diverging from the traditional dimerized acceptors with a linear configuration, this novel electron acceptor displays a distinctive “butterfly-like” structure, comprising two Y-acceptors as wings fused with a pyrene-based backbone. The extended π-conjugated backbone and the electron-donating nature of pyrene enable the new acceptor to show low solubility, elevated glass transition temperature (Tg), and low-lying frontier energy levels. Consequently, the new dimerized acceptor seamlessly integrates as the third component into ternary OSCs, enhancing electron transporting properties, reducing non-radiative voltage loss, and elevating open-circuit voltage. These merits have enabled the ternary OSCs to show an exceptional efficiency of 19.07%, a marked improvement compared to the 17.6% attained in binary OSCs. More importantly, the high Tg exhibited by the pyrene-fused electron acceptor helps to stabilize the morphology of the photoactive layer thermal-treated at 70 °C, retaining 88.7% efficiency over 600 hours. For comparison, binary OSCs experience a decline to 73.7% efficiency after the same duration. These results indicate that the “butterfly-like” design and the incorporation of a pyrene unit is a promising strategy in the development of dimerized electron acceptors for OSCs. 相似文献
14.
Yujun Cheng Qilong Mao Chunxiang Zhou Xuexiang Huang Jiabin Liu Jiawei Deng Zhe Sun Seonghun Jeong Yongjoon Cho Youhui Zhang Prof. Bin Huang Prof. Feiyan Wu Prof. Changduk Yang Prof. Lie Chen 《Angewandte Chemie (International ed. in English)》2023,62(39):e202308267
Single-component organic solar cells (SCOSCs) based on conjugated block copolymers (CBCs) by covalently bonding a polymer donor and polymer acceptor become more and more appealing due to the formation of a favorable and stable morphology. Unfortunately, a deep understanding of the effect of the assembly behavior caused by the sequence structure of CBCs on the device performance is still missing. Herein, from the aspect of manipulating the sequence length and distribution regularity of CBCs, we synthesized a series of new CBCs, namely D18(20)-b-PYIT, D18(40)-b-PYIT and D18(60)-b-PYIT by two-pot polymerization, and D18(40)-b-PYIT(r) by traditional one-pot method. It is observed that precise manipulation of sequence length and distribution regularity of the polymer blocks fine-tunes the self-assembly of the CBCs, optimizes film morphology, improves optoelectronic properties, and reduces energy loss, leading to simultaneously improved efficiency and stability. Among these CBCs, the D18(40)-b-PYIT-based device achieves a high efficiency of 13.4 % with enhanced stability, which is an outstanding performance among SCOSCs. Importantly, the regular sequence distribution and suitable sequence length of the CBCs enable a facile film-forming process of the printed device. For the first time, the blade-coated large-area rigid/flexible SCOSCs are fabricated, delivering an impressive efficiency of 11.62 %/10.73 %, much higher than their corresponding binary devices. 相似文献
15.
Tongle Xu Zhenghui Luo Ruijie Ma Zhanxiang Chen Top Archie Dela Peña Heng Liu Qi Wei Mingjie Li Cai'e Zhang Jiaying Wu Xinhui Lu Gang Li Chuluo Yang 《Angewandte Chemie (International ed. in English)》2023,62(30):e202304127
The central core in A-DA1D-A-type small-molecule acceptor (SMAs) plays an important role in determining the efficiency of organic solar cells (OSCs), while the principles governing the efficient design of SMAs remain elusive. Herein, we developed a series of SMAs with pyrido[2,3-b]quinoxaline (PyQx) as new electron-deficient unit by combining with the cascade-chlorination strategy, namely Py1, Py2, Py3, Py4 and Py5. The introduction of chlorine atoms reduces the intramolecular charge transfer effects but elevates the LUMO values. Density functional theory (DFT) reveals that Py2 with ortho chlorine substituted PyQx and Py5 with two chlorine atoms yield larger dipole moments and smaller π⋅⋅⋅π stacking distances, as compared with the other three acceptors. Moreover, Py2 shows the strongest light absorption capability induced by extended orbit overlap lengths and more efficient packing structures in the dimers. These features endow the best device performance of Py2 due to the better molecular packing and aggregation behaviors, more suitable domain sizes with better exciton dissociation and charge recombination. This study highlights the significance of incorporating large dipole moments, small π⋅⋅⋅π stacking distances and extended orbit overlap lengths in dimers into the development of high-performance SMAs, providing insight into the design of efficient A-DA1D-A-type SMAs for OSCs. 相似文献
16.
Dr. De-Li Ma Qian-Qian Zhang Prof. Chang-Zhi Li 《Angewandte Chemie (International ed. in English)》2023,62(5):e202214931
Searching the cost-effective organic semiconductors is strongly needed in order to facilitate the practice of organic solar cells (OSCs), yet to be fulfilled. Herein, we have succeeded in developing two non-fused ring electron acceptors (NFREAs), leading to the highest efficiency of 16.2 % for the NFREA derived OSCs. These OSCs exhibit the superior operational stabilities under one sun equivalent illumination without ultraviolet (UV) filtration. It is revealed that the modulation of halogen substituents on aromatic side chains, as the new structural tool to tune the intermolecular interaction and optoelectronic properties of acceptors, not only promotes the interlocked tic-tac-toe frame of three-dimensional stacks in solid, but also improves charge dynamics of acceptors to enable high-performance and stable OSCs. 相似文献
17.
Qian Lai Rongshan Zhuang Kun Zhang Tai Wu Lin Xie Dr. Rongjun Zhao Lei Yang Prof. Yang Wang Prof. Yong Hua 《Angewandte Chemie (International ed. in English)》2023,62(31):e202305670
Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) has been identified as the most used and effective p-dopant for hole transport layer (HTL) in perovskite solar cells (PSCs). However, the migration and agglomeration of Li-TFSI in HTL negatively impact PSCs performance and stability. Herein, we report an effective strategy for adding a liquid crystal organic small molecule (LQ) into Li-TFSI doped (2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′- spirobifluorene (Spiro-OMeTAD) HTL. It was found that the introduction of LQ into Spiro-OMeTAD HTL can efficiently enhance the charge carrier extraction and transportation in device, which can strongly retard the charge carrier recombination in device. Consequently, the PSCs efficiency is significantly enhanced to 24.42 % (Spiro-OMeTAD+LQ) from 21.03 % (Spiro-OMeTAD). The chemical coordination between LQ and Li-TFSI can strongly confine Li+ ions migration and agglomeration of Li-TFSI, thus, achieving the enhanced device stability. Only a 9 % efficiency degradation is observed for un-encapsulated device prepared with Spiro-OMeTAD and LQ after 1700 h under air environment, while the efficiency drops by 30 % for the reference device. This work provides an effective strategy for improving the efficiency and stability of PSCs, and gives some important insights for understanding intrinsic hot carriers dynamics for perovskite-based optoelectronic devices. 相似文献
18.
Hongbin Chen Bin Kan Peiran Wang Wanying Feng Longyu Li Shuchao Zhang Tianqi Chen Yang Yang Tainan Duan Zhaoyang Yao Chenxi Li Xiangjian Wan Yongsheng Chen 《Angewandte Chemie (International ed. in English)》2023,62(38):e202307962
To exploit the potential of our newly developed three-dimensional (3D) dimerized acceptors, a series of chlorinated 3D acceptors (namely CH8-3/4/5) were reported by precisely tuning the position of chlorine (Cl) atom. The introduction of Cl atom in central unit affects the molecular conformation. Whereas, by replacing fluorinated terminal groups (CH8-3) with chlorinated terminal groups (CH8-4 and CH8-5), the red-shift absorption and enhanced crystallization are achieved. Benefiting from these, all devices received promising power conversion efficiencies (PCEs) over 16 % as well as decent thermal/photo-stabilities. Among them, PM6:CH8-4 based device yielded a best PCE of 17.58 %. Besides, the 3D merits with multi alkyl chains enable their versatile processability during the device preparation. Impressive PCEs of 17.27 % and 16.23 % could be achieved for non-halogen solvent processable devices prepared in glovebox and ambient, respectively. 2.88 cm2 modules also obtained PCEs over 13 % via spin-coating and blade-coating methods, respectively. These results are among the best performance of dimerized acceptors. The decent performance of CH8-4 on small-area devices, modules and non-halogen solvent-processed devices highlights the versatile processing capability of our 3D acceptors, as well as their potential applications in the future. 相似文献
19.
Kaihu Xian Kangkang Zhou Mingfei Li Junwei Liu Yaowen Zhang Tao Zhang Yong Cui Wenchao Zhao Chunming Yang Jianhui Hou Yanhou Geng Long Ye 《中国化学》2023,41(2):159-166
With the emergence of Y-series small molecule acceptors, polymerizing the small molecule acceptors with aromatic linker units has attracted significant research attention, which has greatly advanced the photovoltaic performance of all-polymer solar cells. Despite the rapid increase in efficiency, the unique characteristics (e. g., mechanical stretchability and flexibility) of all-polymer systems were still not thoroughly explored. In this work, we demonstrate an effective approach to simultaneously improve device performance, stability, and mechanical robustness of all-polymer solar cells by properly suppressing the aggregation and crystallization behaviors of polymerized Y-series acceptors. Strikingly, when introducing 50 wt% PYF-IT (a fluorinated version of PY-IT) into the well-known PM6:PY-IT system, the all-polymer devices delivered an impressive photovoltaic efficiency of 16.6%, significantly higher than that of the control binary cell (15.0%). Compared with the two binary systems, the optimal ternary blend exhibits more efficient charge separation and balanced charge transport accompanying with less recombination. Moreover, a high-performance 1.0 cm2 large-area device of 15% efficiency was demonstrated for the optimized ternary all-polymer blend, which offered a desirable PCE of 14.5% on flexible substrates and improved mechanical flexibility after bending 1000 cycles. Notably, these are among the best results for 1.0 cm2 all-polymer OPVs thus far. This work also heralds a bright future of all-polymer systems for flexible wearable energy-harvesting applications. 相似文献
20.
Chong Guan Chengyi Xiao Xin Liu Zhijie Hu Ruoyao Wang Chao Wang Chengcheng Xie Ziqi Cai Weiwei Li 《Angewandte Chemie (International ed. in English)》2023,62(44):e202312357
The incorporation of insulating polymers into conjugated polymers has been widely explored as a strategy to improve mechanical properties of flexible organic electronics. However, phase separation due to the immiscibility of these polymers has limited their effectiveness. In this study, we report the discovery of multiple non-covalent interactions that enhances the miscibility between insulating and conjugated polymers, resulting in improved mechanical properties. Specifically, we have added polyvinyl chloride (PVC) into the conjugated polymer PM6 and observed a significant increase in solution viscosity, indicative of favorable miscibility between these two polymers. This phenomenon has been rarely observed in other insulating/conjugated polymer composites. Thin films of PM6/PVC exhibit a much-improved crack-onset strain of 19.35 %, compared to 10.12 % for pristine PM6 films. Analysis reveal that a “cyclohexyl-like” structure formed through dipole-dipole interactions and hydrogen bonding between PVC and PM6 acted as a cross-linking site in the thin films, leading to improved mechanical properties. Moreover, PM6/PVC blend films have demonstrated excellent thermal and bending stability when applied as an electron donor in organic solar cells. These findings provide new insights into non-covalent interactions that can be utilized to enhance the properties of conjugated polymers and may have potential applications in flexible organic electronics. 相似文献