首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ni-rich LiNi1−xyMnxCoyO2 (NMC) layered compounds are the dominant cathode for lithium ion batteries. The role of crystallographic defects on structure evolution and performance degradation during electrochemical cycling is not yet fully understood. Here, we investigated the structural evolution of a Ni-rich NMC cathode in a solid-state cell by in situ transmission electron microscopy. Antiphase boundary (APB) and twin boundary (TB) separating layered phases played an important role on phase change. Upon Li depletion, the APB extended across the layered structure, while Li/transition metal (TM) ion mixing in the layered phases was detected to induce the rock-salt phase formation along the coherent TB. According to DFT calculations, Li/TM mixing and phase transition were aided by the low diffusion barriers of TM ions at planar defects. This work reveals the dynamical scenario of secondary phase evolution, helping unveil the origin of performance fading in Ni-rich NMC.  相似文献   

2.
The ternary-layered oxide (LiNixCoyMnzO2) has become the most promising cathode material for lithium-ion batteries due to the advantages of higher discharge platform, better conductivity, and higher theoretical capacity. The [NixCoyMnz](OH)2 with different ratios of nickel, cobalt, and manganese (NCM) was prepared by solvothermal method, and then ternary cathode material LiNixCoyMnzO2 was obtained by mixing lithium and calcining. In this paper, ternary cathode materials with different ratios of NCM were prepared by the solvothermal method. The structure and morphology of the materials were analyzed by X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the ratio on the electrochemical properties of the materials were investigated by constant current charge and discharge test and electrochemical impedance spectroscopy test. The synthesized lithium-nickel-cobalt-manganese oxide belongs to the hexagonal system and has an α-NaFeO2 layered structure, which is an R-3m space group. The NCM ternary cathode materials with different morphologies were obtained by changing the ratio of NCM. The sample with NCM ratio of 5:3:2 has a unique sheet-like spherical shape and has the best rate performance.  相似文献   

3.
Single crystallization of LiNixCoyMn1-x-yO2(NCM) is currently an effective strategy to improve the cycling life of NCM cathode, owing to the reduced surface area and enhanced mechanical strength, but the application of single crystal NCM(SC-NCM) is being hindered by severe particle agglomeration and poor C-rate performance. Here, a strategy of three-section-sintering(TSS) with the presence of grain-growth inhibitor was proposed, in which, the TSS includes three sections of phase-formation, grain-growth and phase-preservation. While, the addition of MoO3 inhibits the grain growth and restrains the particle agglomeration. With the help of TSS and 1 mol % of MoO3, highly dispersed surface Mo-doped SC-NCM(MSC-NCM) cubes are obtained with the average diameter of 1.3 μm. Benefiting from the surface Mo-doping and the reduced surface energy, the Li+-migration preferred (1 0 4) crystalline facet is exposed as the dominant plane in MSC-NCM cubes, because of which, C-rate performance is significantly improved compared with the regular SC-NCM. Furthermore, this preparation strategy is compatible well with the current industrial production line, providing an easy way for the large-scale production of SC-NCM.  相似文献   

4.
Lithium cobalt oxide, LiCoO2, has been the most widely used cathode material in commercial lithium ion batteries. Nevertheless, cobalt has economic and environmental problems that leave the door open to exploit alternative cathode materials, among which LiNi x CoyMn1 − x − y O2 may have improved performances, such as thermal stability, due to the synergistic effect of the three ions. Recently, intensive effort has been directed towards the development of LiNi x Co y Mn1 − x − y O2 as a possible replacement for LiCoO2. Recent advances in layered LiNi x CoyMn1 − x − y O2 cathode materials are summarized in this paper. The preparation and the performance are reviewed, and the future promising cathode materials are also prospected.  相似文献   

5.
With ever-increasing pursuit for high-value output in recycling spent lithium-ion batteries (LIBs), traditional recycling methods of cathodes tend to be obsolete because of the complicated procedures. Herein, we first upcycle spent polycrystal LiNi0.88Co0.095Al0.025O2 (S-NCA) to high value-added single-crystalline and Li-rich cathode materials through a simple but feasible LiOH-Na2SO4 eutectic molten salt strategy. The in situ X-ray diffraction technique and a series of paratactic experiments record the evolution process of upcycling and prove that excessive Li occupies the transition metal (TM) layers. Beneficial from the single-crystalline and Li-rich nature, the regenerated NCA (R-NCA) exhibits remarkably enhanced electrochemical performances in terms of long-term cyclability, high-rate performance and low polarization. This approach can also be successfully extended to other cathode materials e.g., LiNixCoyMnzO2 (NCM) and mixed spent NCAs with varied degree of Li loss.  相似文献   

6.
Effect of secondary particle fracture on the accumulated cycle capacity fade of LiNi1-x-yCoxMnyO2 cathode is difficult to evaluate since performance degradation of electrode material is always caused by several factors simultaneously. Herein, LiNi0.5Co0.2Mn0.3O2 single particles (Sin-P) are prepared and introduced as a reference to understand the accumulated cycle capacity fade caused by the secondary particle fracture of LiNi0.5Co0.2Mn0.3O2 secondary particles (Sec-P). Sec-P exhibited accumulated cycle capacity fade compared to Sin-P when cycled at high rate, high voltage, and high temperature. The accumulated cycle capacity fade was mainly caused by the secondary particle fracture of Sec-P, which was confirmed by the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM) analysis. Further, XPS and electrochemical impedance spectroscopy (EIS) analysis indicated that the surface property changes and resistance rise were responsible for the accumulated cycle capacity fade. The study provides a novel way to analyze the accumulated cycle capacity fade caused by the secondary particle fracture and is helpful for understanding the performance degradation mechanism of electrode material.  相似文献   

7.
Solid-state batteries (SSBs) with high-voltage cathode active materials (CAMs) such as LiNi1−xyCoxMnyO2 (NCM) and poly(ethylene oxide) (PEO) suffer from “noisy voltage” related cell failure. Moreover, reports on their long-term cycling performance with high-voltage CAMs are not consistent. In this work, we verified that the penetration of lithium dendrites through the solid polymer electrolyte (SPE) indeed causes such “noisy voltage cell failure”. This problem can be overcome by a simple modification of the SPE using higher molecular weight PEO, resulting in an improved cycling stability compared to lower molecular weight PEO. Furthermore, X-ray photoelectron spectroscopy analysis confirms the formation of oxidative degradation products after cycling with NCM, for what Fourier transform infrared spectroscopy is not suitable as an analytical technique due to its limited surface sensitivity. Overall, our results help to critically evaluate and improve the stability of PEO-based SSBs.  相似文献   

8.
The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (≈25 μm) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm−2. Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7Mn0.2Co0.1O2, Li1.2Co0.1Mn0.55Ni0.15O2, and sulfur demonstrate significantly improved cycling stability with high cathode loading.  相似文献   

9.
Li-metal batteries (LMB), although providing high energy density, face the grand challenge of identifying good electrolyte solvents for cycling. Common solvents are either only stable against lithium metal anode or only stable against LiNixMnyCo1-x-yO2 (NMC) cathode. There is significant effort trying to increase the cathode stability for ether electrolytes, which are in general stable against lithium metal anode. In comparison, there is much less effort trying to increase the anode stability of electrolytes that are stable against NMC cathode. One example is the sulfone-based electrolyte. It has good cathode stability but is hindered from practical application because of (1) high viscosity and poor wetting capability and (2) poor anode stability. Here, we solve these issues by modifying the sulfone molecules using resonance and electron withdrawing effect. The viscosity is significantly reduced by delocalizing the electrons through introducing additional oxygen on the molecular backbone and applying appropriate fluorination. The resulting molecule 2,2,2-trifluoroethyl mesylate (TFEM) has decreased Lewis basicity and less reactivity toward Li+. The electrolyte based on TFEM as single solvent enables cycling of LMB under harsh conditions of low N/P ratio (21 mg/cm2 NMC811 and 50 μm Li) with 90 % capacity retention after 160 cycles at C/3 discharge rate.  相似文献   

10.
The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3 participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.  相似文献   

11.
The lifetime of lithium ion batteries (LIBs) decreases under continuous cycling due to various degradation processes, such as dissolution of transition metals (TMs) from the electrodes. Therefore, suitable methods to analyze the oxidation states of TMs are mandatory to better understand the dissolution mechanisms of TMs from positive and negative electrodes (LIBs). To investigate the dissolution of Mn2+ and Mn3+ in electrolytes of LIBs, a previously implemented capillary electrophoresis (CE) method with UV/Vis spectroscopy detection was further developed with the aim of higher sensitivities and additional detection of other dissolved divalent TMs such as Co2+, Ni2+, and Cu2+. Therefore, inductively coupled plasma–mass spectrometry was applied instead of UV/Vis for detection. This also allows the use of Ga3+ instead of the previously used Cu2+ as an internal standard, which solves the limitation of this method for cycled LIBs due to copper dissolution from the copper-based current collector. The CE buffer based on sodium diphosphate as complexing agent for the stabilization of Mn3+ and cetyltrimethylammonium bromide as dynamic capillary wall modifier was optimized in terms of concentrations and pH. Finally, both manganese species and Co2+, Ni2+, and Cu2+ could be analyzed within 15 min. With this improved method, the dissolution of TMs in LIBs for positive electrode materials such as LiNi0.5Mn1.5O4 (LNMO) or LiNixCoyMnzO2 (NCM, x + y + z = 1) can be studied in future in more detail.  相似文献   

12.
A rechargeable Li metal anode coupled with a high‐voltage cathode is a promising approach to high‐energy‐density batteries exceeding 300 Wh kg?1. Reported here is an advanced dual‐additive electrolyte containing a unique solvation structure and it comprises a tris(pentafluorophenyl)borane additive and LiNO3 in a carbonate‐based electrolyte. This system generates a robust outer Li2O solid electrolyte interface and F‐ and B‐containing conformal cathode electrolyte interphase. The resulting stable ion transport kinetics enables excellent cycling of Li/LiNi0.8Mn0.1Co0.1O2 for 140 cycles with 80 % capacity retention under highly challenging conditions (≈295.1 Wh kg?1 at cell‐level). The electrolyte also exhibits high cycling stability for a 4.6 V LiCoO2 (160 cycles with 89.8 % capacity retention) cathode and 4.95 V LiNi0.5Mn1.5O4 cathode.  相似文献   

13.
We have compared the structure, microstructure, and electrochemical characteristics of xLi2MnO3–(1−x)Li(Mn0.375Ni0.375Co0.25)O2 (0.0 ≤ x ≤ 1.0) thin films with their bulk cathode laminate counterparts of identical compositions. Pure Li(Mn0.375Ni0.375Co0.25)O2 as well as the synthesized composite films partially transform into cubic spinel structure during charge–discharge cycling. In contrast, such layered to spinel phase transformation has only been identified in bulk cathode laminates with x ≥ 0.75. At a current density 0.05 mAcm−2, the discharge capacity of Li(Mn0.375Ni0.375Co0.25)O2 thin film was measured to be ∼60 μAhcm−2. The discharge capacity (∼217 μAhcm−2) was markedly improved in x∼0.5 composite thin film. The capacity retention after 20 charge discharge cycles are improved in composite films; however, their capacity fading could not be eliminated completely.  相似文献   

14.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   

15.
In this paper, ZnO was applied to modify the surface of LiNi1/3Co1/3Mn1/3O2 cathode material by a simple method. Powder X-ray diffraction (XRD) results show that both of the pristine material and the modified material were well crystallized and closely similar to each other. The crystal parameters of pristine material increased by modified measure. Scan electron microscope (SEM) pictures exhibit that the quasispherical pristine material was modified to the squareness one. Transmission electron microscope (TEM) image clearly elucidates that ZnO (several nanometers to 20 nm) was successful coated on surface of LiNi1/3Co1/3Mn1/3O2. X-ray photo-electron spectrometry (XPS) is used to characterize the composite of the coating layer on the surface of modified material. Electrochemical performance results present that the ZnO coating layer decrease the initial capacities of LiNi1/3Co1/3Mn1/3O2 by increasing the surface layer resistances. However, the cycling performance of LiNi1/3Co1/3Mn1/3O2 was effectively improved by the ZnO coating layer.  相似文献   

16.
顾大明  谢颖  史鹏飞  付宏刚 《化学学报》2006,64(12):1223-1227
>为获得综合性能更好的锂离子二次电池正极材料, 分析了Co掺杂对LixNiO2电化学性能的影响. 采用密度泛函DFT理论对LixNiO2和LixNi0.5Co0.5O2的平均放电电压和态密度进行了计算. 同时, 用共沉淀法制备了LixNiO2和LixNi0.5Co0.5O2锂离子二次电池正极材料, 并对其进行了XRD结构分析和恒流充放电测试. 实验和计算结果表明: 随锂离子嵌入正极(电池放电), 电池的电压逐渐降低, 材料的态密度峰向低能量方向移动; 与LixNiO2相比, LixNi0.5Co0.5O2的电压平台相对较高(当0.25≤x≤0.5), 而且在Li嵌/脱时, LixNi0.5Co0.5O2的结构变化相对较小; Co离子的掺入, 减小了NiO6八面体的畸变度, 使材料的电化学稳定性得以提高. 在钴掺杂镍酸锂体系中, NiO6和CoO6具有相互的稳定作用.  相似文献   

17.
In order to improve the cycling performance of LiMn2O4, a part of Mn in LiMn2O4 was replaced by Ni. LiNi y Mn2 − y O4 (y = 0.02, 0.05, 0.10, 0.15, and 0.20) were synthesized by preheating a mixture of LiOH, MnO2 (CMD), and NiO at 400°C for 10 h and then calcining at 850°C for 48 h in air with intermediate grinding. The voltage vs. discharge capacity curves at a current density of 300 μA/cm2 between 3.5 and 4.3 V showed two plateaus, but the plateaus became unclear as the value of y increased. The sample with y = 0.02 had the largest first discharge capacity of 118.1 mA h/g. The LiNi0.10Mn1.90O4 sample had a relatively large first discharge capacity of 95.0 mA h/g and snowed an excellent cycling performance.  相似文献   

18.
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1).  相似文献   

19.
A facile method for the surface modification of high-voltage and high-temperature LiNi0.8Co0.1Mn0.1O2 cathode materials is demonstrated. In order to prepare polypyrrole (PPy) coating LiNi0.8Co0.1Mn0.1O2 material, the facile chemical polymerization method uses Fe(III) tosylate as oxidant and ethanol as solvent to avoid the side reaction with solvent. TEM depicts that LiNi0.8Co0.1Mn0.1O2 serves as hard template and the nanoscale PPy layer grows along the surface of LiNi0.8Co0.1Mn0.1O2 during the synthesis process. Because of flocculent and nanofiber coating layer, much improved rate performance, high temperature cycling, as well as high voltage performance are obtained. Cyclic voltammetry (CV) and electrochemical impedance spectroscopic (EIS) results demonstrate that the PPy coating layer effectively alleviates the side reactions between liquid electrolytes and LiNi0.8Co0.1Mn0.1O2 surface that are highly unstable at high temperature and high charge voltage.  相似文献   

20.
LiNi0.5Mn1.5O4 cathode materials were successfully prepared by sol–gel method with two different Li sources. The effect of both lithium acetate and lithium hydroxide on physical and electrochemical performances of LiNi0.5Mn1.5O4 was investigated by scanning electron microscopy, Fourier transform infrared, X-ray diffraction, and electrochemical method. The structure of both samples is confirmed as typical cubic spinel with Fd3m space group, whichever lithium salt is adopted. The grain size of LiNi0.5Mn1.5O4 powder and its electrochemical behaviors are strongly affected by Li sources. For the samples prepared with lithium acetate, more spinel nucleation should form during the precalcination process, which was stimulated by the heat released from the combustion of extra organic acetate group. Therefore, the particle size of the obtained powder presents smaller average and wider distribution, which facilitates the initial discharge capacity and deteriorates the cycling performance. More seriously, there exists cation replacement of Li sites by transition metal elements, which causes channel block for Li ion transference and deteriorates the rate capability. The compound obtained with lithium hydroxide exhibits better electrochemical responses in terms of both cycling and rate properties due to higher crystallinity, moderate particle size, narrow size distribution and lower transition cation substitute content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号