首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Herein we present the first double deprotonation of acetonitrile (CH3CN) using two equivalents of a bimetallic iron-aluminium complex. The products of this reaction contain an exceeding simple yet rare [CHCN]2− dianion moiety that bridges two metal fragments. DFT calculations suggest that the bonding to the metal centres occurs through heavily polarised covalent interactions. Mechanistic studies reveal the intermediacy of a monomeric [CH2CN] complex, which has been characterised in situ. Our findings provide an important example in which a bimetallic metal complex achieves a new type of reactivity not previously encountered with monometallic counterparts.[1, 2] The isolation of a [CHCN]2− dianion through simple deprotonation of CH3CN also offers the possibility of establishing a broader chemistry of this motif.  相似文献   

2.
Much progress has been made in the development of methods to both create compounds that contain C−F bonds and to functionalize C−F bonds. As such, C−F bonds are becoming common and versatile synthetic functional handles. This review summarizes the advantages of defluorinative functionalization reactions for small molecule synthesis. The coverage is organized by the type of carbon framework the fluorine is attached to for mono- and polyfluorinated motifs. The main challenges, opportunities and advances of defluorinative functionalization are discussed for each class of organofluorine. Most of the text focuses on case studies that illustrate how defluorofunctionalization can improve routes to synthetic targets or how the properties of C−F bonds enable unique mechanisms and reactions. The broader goal is to showcase the opportunities for incorporating and exploiting C−F bonds in the design of synthetic routes, improvement of specific reactions and advent of new methods.  相似文献   

3.
Identifying (bio)catalysts displaying high enantio-/stereoselectivity is a fundamental prerequisite for the advancement of asymmetric catalysis. Herein, a high-throughput, stereoselective screening assay is reported that gives information on enantioselectivity, stereopreference and activity as showcased for peroxygenase-catalyzed hydroxylation. The assay is based on spectrophotometric analysis of the simultaneous formation of NAD(P)H from the alcohol dehydrogenase catalyzed enantioselective oxidation of the sec-alcohol product formed in the peroxygenase reaction. The assay was applied to investigate a library comprising 44 unspecific peroxygenases (UPOs) containing 25 UPOs not reported yet. Thereby, previously non-described wild-type UPOs displaying (S)- as well as (R)-stereoselectivity for the hydroxylation of representative model substrates were identified, reaching up to 98 % ee for the (R)- and 94 % ee for the (S)-enantiomer. Homology models with concomitant docking studies indicated the structural reason for the observed complementary stereopreference.  相似文献   

4.
The copper-dependent formylglycine-generating enzyme (FGE) catalyzes the oxygen-dependent oxidation of specific peptidyl-cysteine residues to formylglycine. Our QM/MM calculations provide a very likely mechanism for this transformation. The reaction starts with dioxygen binding to the tris-thiolate CuI center to form a triplet CuII-superoxide complex. The rate-determining hydrogen atom abstraction involves a triplet-singlet crossing to form a CuII−OOH species that couples with the substrate radical, leading to a CuI-alkylperoxo intermediate. This is accompanied by proton transfer from the hydroperoxide to the S atom of the substrate via a nearby water molecule. The subsequent O−O bond cleavage is coupled with the C−S bond breaking that generates the formylglycine and a CuII-oxyl complex. Moreover, our results suggest that the aldehyde oxygen of the final product originates from O2, which will be useful for future experimental work.  相似文献   

5.
As a novel Sanger-type reagent, 2-fluoro-5-nitrophenyldiazonium tetrafluoroborate enabled the versatile functionalization of primary and secondary aliphatic alcohols. Based on a mild nucleophilic aromatic substitution of the fluorine atom under unprecedented, base-free conditions, the diazonium unit on the aromatic core of the resulting aryl-alkyl ether could be employed for such diverse transformations as radical C−H activation and cyclization, as well as palladium catalyzed cross-coupling reactions.  相似文献   

6.
A palladium-catalyzed skeletal rearrangement of 2-(2-allylarylsilyl)aryl triflates has been developed to give highly fused tetrahydrophenanthrosilole derivatives via unprecedented 1,5-C−Pd/C−Si bond exchange. The reaction pathways can be switched toward 4-membered ring-forming C(sp2)−H alkylation by tuning the reaction conditions to give completely different products, fused dihydrodibenzosilepin derivatives, from the same starting materials. The inspection of the reaction conditions revealed the importance of carboxylates in promoting the C−Pd/C−Si bond exchange.  相似文献   

7.
Transition metal-catalyzed enantioselective C−H activation of prochiral sulfoximines for non-annulated products remains a formidable challenge. We herein report iridium-catalyzed enantioselective C−H borylation of N-silyl diaryl sulfoximines using a well-designed chiral bidentate boryl ligand with a bulky side arm. This method is capable of accommodating a broad range of substrates under mild reaction conditions, affording a vast array of chiral sulfoximines with high enantioselectivities. We also demonstrated the synthetic utility on a preparative-scale C−H borylation for diverse downstream transformations, including the synthesis of chiral version of bioactive molecules. Computational studies showed that the bulky side arm of the ligand confers high regio- and enantioselectivity through steric effect.  相似文献   

8.
Herein, a visible-light photochemical approach for practical helicene functionalization at very mild reaction conditions is described. The photochemical reactions allow for the regiospecific and innate late-stage functionalization of helicenes and are easily executed either through the activation of C(sp2)−Br bonds in helicenes using K2CO3 as inorganic base or direct C(sp2)−H helicene bond functionalization under oxidative photoredox reaction conditions. Overall, using these transformations six different functional groups are introduced to the helicene scaffold through C−C and four different C-heteroatom bond-forming reactions.  相似文献   

9.
Owing to the ready availability of the starting materials, the functionalization of saturated hydrocarbons for preparing chemical intermediates and products represents an attractive goal. The possibility of converting alkane in a controlled way into alcohols, ketones etc., i.e. to oxyfunctionalize them, is particularly challenging. After a short account of previous methods used for the oxidation of alkanes, particular emphasis will be given to recently developed reactions of alkanes with oxygenating agents in superacidic media.  相似文献   

10.
Synthetic methods for unsymmetrical disulfides are greatly needed owing to their applications in drug discovery, linker chemistry, and materials sciences. In this study, a new shelf-stable and easy-to-prepare bilateral disulfurating platform molecule, N-(morpholine-4-dithio)phthalimide, has been developed for the divergent synthesis of unsymmetrical disulfides. The amino and imide leaving groups of this reagent can be orthogonally transformed. Under acidic conditions, the amino moiety undergoes selective protonation and thus can be displaced by various carbon nucleophiles, such as allyl trimethylsilanes, alkynyl silanes, and electron-rich arenes, leaving the phthalimide moiety untouched. Meanwhile, the phthalimide leaving group is amenable to substitution under basic or neutral conditions. The combination of these transformations provides rapid access to diverse unsymmetrical disulfides through two C−S bond-forming reactions.  相似文献   

11.
C?C bond formation is the most fundamental way for the chain propagation in organic molecules. This achievement through tandem oxidation of two different C?H bonds represents the state of the art in organic synthesis. Selective functionalization of the ubiquitous aliphatic C?H bonds offers an attractive option for this oxidative cross‐coupling methodology. To develop such a methodology under mild and “metal‐free” conditions remains challenging. Herein, we report hypervalent iodine‐mediated selective oxidative functionalization of aliphatic C?H bonds of alkanes with chromones and (thio)chromones. A wide range of alkanes, both cyclic and acyclic, has been found to react selectively and predictably in good yields. The developed methodology is also the first report of a direct oxidative functionalization of the C‐2 position of (thio)chromones with alkanes to access bioactive compounds.  相似文献   

12.
The 3d-metal catalyst Mn(CO)5Br was found to efficiently promote ortho C−H allylations of arenecarboxylates in the presence of neocuproine as the ligand. Despite the simplicity of directing group and catalyst system, the selectivity goes well beyond the state-of-the-art in that mono-allylated products are obtained exclusively with high selectivities for the least hindered ortho-position. The directing group can optionally be removed by in situ decarboxylation, opening up a regioselective entry to allyl arenes. The preparative utility of the process and its othogonality to other approaches was demonstrated by 44 products with otherwise hard-to-access substitution patterns, including 3-bromo-allylbenzene, 3-allylbenzofuran, or 5-allyl-2-methylnitrobenzene.  相似文献   

13.
Rhodium-catalyzed C−H insertions and cyclopropanations of donor/acceptor carbenes have been used for the synthesis of positional analogues of methylphenidate. The site selectivity is controlled by the catalyst and the amine protecting group. C−H functionalization of N-Boc-piperidine using Rh2(R-TCPTAD)4, or N-brosyl-piperidine using Rh2(R-TPPTTL)4 generated 2-substitited analogues. In contrast, when N-α-oxoarylacetyl-piperidines were used in combination with Rh2(S-2-Cl-5-BrTPCP)4, the C−H functionalization produced 4-susbstiuted analogues. Finally, the 3-substituted analogues were prepared indirectly by cyclopropanation of N-Boc-tetrahydropyridine followed by reductive regio- and stereoselective ring-opening of the cyclopropanes.  相似文献   

14.
Chiral diarylmethylamines (DAMA) are important structural motifs widely present in pharmaceuticals, natural products, and chiral ligands. Herein, we reported a highly enantioselective synthesis of chiral DAMAs via cobalt-catalyzed enantioselective C−H alkoxylation strategy. The reaction features easy operation, the use of earth-abundant and cost-efficient cobalt(II) catalyst, and readily available ligand. A range of chiral DAMAs were efficiently synthesized in high yields with excellent enantioselectivities (up to 90 % yield and up to 99 % ee) through desymmetrization and parallel kinetic resolution. Moreover, this protocol was also compatible with the synthesis of chiral benzylamines via kinetic resolution.  相似文献   

15.
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.  相似文献   

16.
Investigations into C−H amidation reactions catalysed by cationic half-sandwich d6 metal complexes revealed that the indenyl-derived catalyst [Ind*RhCl2]2 significantly accelerated the directed ortho C−H amidation of benzoyl silanes using 1,4,2-dioxazol-5-ones. Ring slippage involving a haptotropic η5 to η3 rearrangement of the indenyl complex proposedly enables ligand substitution at the metal centre to proceed via associative, rather than dissociative pathways, leading to significant rate and yield enhancements. Intriguingly, this phenomenon appears specific for C−H amidation reactions involving weakly coordinating carbonyl-based directing groups with no acceleration observed for the corresponding reactions involving strongly coordinating nitrogen-based directing groups.  相似文献   

17.
The development of environment-friendly, step economic couplings to generate structurally diverse macrocyclic compounds is highly desirable but poses a marked challenge. Inspired by the C−H oxidation mechanism of cytochromes P450, an unprecedented and practical RhIII-catalyzed acylmethylation macrocyclization via C−H/O2 dual activation has been developed by us. The process of macrocyclization is facilitated by a synergic coordination from pyridine and ester group. Interestingly, the reaction mode derives from a three-component coupling which differs from established olefination and alkylation paths. Density functional theory (DFT) calculations and control experiments revealed the mechanism of this unique C−H/O2 dual activation. The newly achieved acylmethylation macrocyclic products and their derivatives showed a potent anti-H1N1 bioactivity, which may provide an opportunity for the discovery of novel anti-H1N1 macrocyclic leading compounds.  相似文献   

18.
Metalla-electrocatalyzed C−H oxygenation represents one of the most straightforward and sustainable approaches to access valuable oxygenated molecules. Despite the significant advances, the development of enantioselective electrochemical C−H oxygenation reaction is very challenging and remains elusive. Herein, we described the first electrochemical CoII-catalyzed enantioselective C−H alkoxylation. A broad range of enantioenriched alkoxylated phosphinamides were obtained in good yields with excellent enantioselectivities (up to 98 % yield and >99 % ee). An unusual cobalt(III) alcohol complex was prepared and fully characterized, which was proven to be a key intermediate of this C−H alkoxylation reaction. Mechanistic studies revealed that the oxidation of CoIII to CoIV was facilitated by a base and the whole process proceeded through a cobalt(III/IV/II) catalytic cycle.  相似文献   

19.
Developing new reactive pathway to activate inert C(sp3)−H bonds for valuable oxygenated products remains a challenge. We prepared a series of triazine conjugated organic polymers to photoactivate C−H into aldehyde/ketone via O2→H2O2→⋅OH→Cl⋅→Cl2. Experiment results showed Cl2 could successively activate C(sp3)−H more effectively than Cl⋅ to generate unstable dichlorinated intermediates, increasing the kinetic rate ratio of dichlorination to monochlorination by a factor of 2,000 and thus breaking traditional dichlorination kinetic constraints. These active intermediates were hydrolyzed into aldehydes or ketones easily, when compared with typical stable dichlorinated complexes, avoiding chlorinated by-product generation. Moreover, an integrated two-phase system in an acid solution strengthened the Cl2 mediated process and inhibited product overoxidation, where the conversion rate of toluene reached 16.94 mmol/g/h and the selectivity of benzaldehyde was 99.5 %. This work presents a facile and efficient approach for selective conversion of inert C(sp3)−H bonds using Cl2.  相似文献   

20.
The divergent synthesis of two indane polyketides of the indidene family, namely (±)-indidene A (11 steps, 1.7 %) and (+)-indidene C (13 steps, 1.3 %), is reported. The synthesis of the trans-configured common indane intermediate was enabled by palladium(0)-catalyzed methylene C(sp3)−H arylation, which was performed in both racemic and enantioselective (e.r. 99 : 1) modes. Further elaboration of this common intermediate by nickel-catalyzed dehydrogenative coupling allowed the rapid installation of the aroyl moiety of (±)-indidene A. In parallel, the biphenyl system of (±)- and (+)-indidene C was constructed by Suzuki–Miyaura coupling. These investigations led us to revise the structures of indidenes B and C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号