共查询到20条相似文献,搜索用时 15 毫秒
1.
Yiran Liu Meng Zhao Li-Peng Hou Zheng Li Chen-Xi Bi Zi-Xian Chen Qian Cheng Dr. Xue-Qiang Zhang Dr. Bo-Quan Li Prof. Stefan Kaskel Prof. Jia-Qi Huang 《Angewandte Chemie (International ed. in English)》2023,62(30):e202303363
Lithium–sulfur (Li–S) batteries are regarded as promising high-energy-density energy storage devices. However, the cycling stability of Li–S batteries is restricted by the parasitic reactions between Li metal anodes and soluble lithium polysulfides (LiPSs). Encapsulating LiPS electrolyte (EPSE) can efficiently suppress the parasitic reactions but inevitably sacrifices the cathode sulfur redox kinetics. To address the above dilemma, a redox comediation strategy for EPSE is proposed to realize high-energy-density and long-cycling Li–S batteries. Concretely, dimethyl diselenide (DMDSe) is employed as an efficient redox comediator to facilitate the sulfur redox kinetics in Li–S batteries with EPSE. DMDSe enhances the liquid–liquid and liquid–solid conversion kinetics of LiPS in EPSE while maintains the ability to alleviate the anode parasitic reactions from LiPSs. Consequently, a Li–S pouch cell with a high energy density of 359 Wh kg−1 at cell level and stable 37 cycles is realized. This work provides an effective redox comediation strategy for EPSE to simultaneously achieve high energy density and long cycling stability in Li–S batteries and inspires rational integration of multi-strategies for practical working batteries. 相似文献
2.
3.
Wei-Jing Chen Bo-Quan Li Chang-Xin Zhao Meng Zhao Prof. Tong-Qi Yuan Prof. Run-Cang Sun Prof. Jia-Qi Huang Prof. Qiang Zhang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(27):10821-10834
Lithium–sulfur (Li–S) batteries are highly regarded as the next-generation energy-storage devices because of their ultrahigh theoretical energy density of 2600 Wh kg−1. Sulfurized polyacrylonitrile (SPAN) is considered a promising sulfur cathode to substitute carbon/sulfur (C/S) composites to afford higher Coulombic efficiency, improved cycling stability, and potential high-energy-density Li–SPAN batteries. However, the instability of the Li-metal anode threatens the performances of Li–SPAN batteries bringing limited lifespan and safety hazards. Li-metal can react with most kinds of electrolyte to generate a protective solid electrolyte interphase (SEI), electrolyte regulation is a widely accepted strategy to protect Li-metal anodes in rechargeable batteries. Herein, the basic principles and current challenges of Li–SPAN batteries are addressed. Recent advances on electrolyte regulation towards stable Li-metal anodes in Li–SPAN batteries are summarized to suggest design strategies of solvents, lithium salts, additives, and gel electrolyte. Finally, prospects for future electrolyte design and Li anode protection in Li–SPAN batteries are discussed. 相似文献
4.
Minya Wang Prof. Xinhui Xia Dr. Yu Zhong Prof. Jianbo Wu Dr. Ruochen Xu Dr. Zhujun Yao Dr. Donghuang Wang Wangjia Tang Prof. Xiuli Wang Prof. Jiangping Tu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(15):3710-3725
Lithium–sulfur batteries (LSBs) are considered to be one of the most promising alternatives to the current lithium-ion batteries (LIBs) to meet the increasing demand for energy storage owing to their high energy density, natural abundance, low cost, and environmental friendliness. Despite great success, LSBs still suffer from several problems, including undermined capacity arising from low utilization of sulfur, unsatisfactory rate performance and poor cycling life owing to the shuttle effect of polysulfides, and poor electrical conductivity of sulfur. Under such circumstances, the design/fabrication of porous carbon–sulfur composite cathodes is regarded as an effective solution to overcome the above problems. In this review, different synthetic methods of porous carbon hosts and their corresponding integration into carbon–sulfur cathodes are summarized. The pore formation mechanism of porous carbon hosts is also addressed. The pore size effect on electrochemical performance is highlighted and compared. The enhanced mechanism of the porous carbon host on the sulfur cathode is systematically reviewed and revealed. Finally, the combination of porous carbon hosts and high-profile solid-state electrolytes is demonstrated, and the challenges to realize large-scale commercial application of porous carbon–sulfur cathodes is discussed and future trends are proposed. 相似文献
5.
Maoxu Wang Lishuang Fan Xian Wu Yue Qiu Prof. Yan Wang Prof. Naiqing Zhang Prof. Kening Sun 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(21):5416-5421
Lithium–sulfur (Li–S) batteries have been recognized as outstanding candidates for energy storage systems due to their superiority in terms of energy density. To meet the requirements for practical use, it is necessary to develop an effective method to realize Li–S batteries with high sulfur utilization and cycle stability. Here, a strategy to construct heterostructure composites as cathodes for high performance Li–S batteries is presented. Taking the SnS2/SnO2 couple as an example, SnS2/SnO2 nanosheet heterostructures on carbon nanofibers (CNFs), named C@SnS2/SnO2, were designed and synthesized. Considering the electrochemical performance of SnS2/SnO2 heterostructures, it is interesting to note that the existence of heterointerfaces could efficiently improve lithium ion diffusion rate so as to accelerate the redox reaction significantly, thus leading to the enhanced sulfur utilization and more excellent rate performance. Benefiting from the unique structure and heterointerfaces of C@SnS2/SnO2 materials, the battery exhibited excellent cyclic stability and high sulfur utilization. This work may provide a powerful strategy for guiding the design of sulfur hosts from selecting the material composition to constructing of microstructure. 相似文献
6.
Yikun Yi Hongping Li Honghong Chang Pu Yang Xiaolu Tian Pei Liu Dr. Long Qu Dr. Mingtao Li Dr. Bolun Yang Dr. Huaming Li Dr. Wenshuai Zhu Dr. Sheng Dai 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(34):8112-8117
Lithium–sulfur (Li-S) batteries have become one of the most promising candidates as next-generation batteries, owing to their high specific capacity, low cost, and environmental benignity. Although many strategies have been proposed to restrain the shuttle of lithium polysulfides (LiPSs) through physical trapping and chemical binding, the sluggish kinetics of PS conversion still degrade the capacity, rate, and cycling performance of Li-S batteries. Herein, a novel kind of few-layer BN with engineered nitrogen vacancies (v-BN) has been developed as a cathode matrix for Li-S batteries. The positive vacancies in the BN nanosheets not only promote the immobilization and conversion of LiPSs, but also accelerate the lithium ion diffusion in cathode electrodes. Compared with pristine BN, the v-BN cathodes exhibit higher initial capacities from 775 mA h g−1 to 1262 mA h g−1 at 0.1 C and a high average coulombic efficiency of over 98 % during 150 cycles. Upon increasing the current density to 1 C, the cell still preserves a capacity of 406 mA h g−1 after 500 cycles, exhibiting a capacity decay of only 0.084 % per cycle. The new vacancy-engineered material provides a promising method for achieving excellent performance in Li-S batteries. 相似文献
7.
Jin Xie Yun-Wei Song Dr. Bo-Quan Li Dr. Hong-Jie Peng Prof. Jia-Qi Huang Prof. Qiang Zhang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(49):22334-22339
Polysulfide intermediates (PSs), the liquid-phase species of active materials in lithium–sulfur (Li-S) batteries, connect the electrochemical reactions between insulative solid sulfur and lithium sulfide and are key to full exertion of the high-energy-density Li-S system. Herein, the concept of sulfur container additives is proposed for the direct modification on the PSs species. By reversible storage and release of the sulfur species, the container molecule converts small PSs into large organosulfur species. The prototype di(tri)sulfide-polyethylene glycol sulfur container is highly efficient in the reversible PS transformation to multiply affect electrochemical behaviors of sulfur cathodes in terms of liquid-species clustering, reaction kinetics, and solid deposition. The stability and capacity of Li-S cells was thereby enhanced. The sulfur container is a strategy to directly modify PSs, enlightening the precise regulation on Li-S batteries and multi-phase electrochemical systems. 相似文献
8.
Matthew Sadd Dr. Marco Agostini Dr. Shizhao Xiong Prof. Aleksandar Matic 《Chemphyschem》2022,23(4):e202100853
Semi-liquid catholyte Lithium−Sulfur (Li−S) cells have shown to be a promising path to realize high energy density energy storage devices. In general, Li−S cells rely on the conversion of elemental sulfur to soluble polysulfide species. In the case of catholyte cells, the active material is added through polysulfide species dissolved in the electrolyte. Herein, we use operando Raman spectroscopy to track the speciation and migration of polysulfides in the catholyte to shed light on the processes taking place. Combined with ex-situ surface and electrochemical analysis we show that the migration of polysulfides is central in order to maximize the performance in terms of capacity (active material utilization) as well as interphase stability on the Li-metal anode during cycling. More specifically we show that using a catholyte where the polysulfides have the dual roles of active material and conducting species, e. g. no traditional Li-salt (such as LiTFSI) is present, results in a higher mobility and faster migration of polysulfides. We also reveal how the formation of long chain polysulfides in the catholyte is delayed during charge as a result of rapid formation and migration of shorter chain species, beneficial for reaching higher capacities. However, the depletion of ionic species during the last stage of charge, due to the conversion to and precipitation of elemental sulfur on the cathode support, results in polarization of the cell before full conversion can be achieved. 相似文献
9.
Zhisheng Yu Menglan Liu Daying Guo Jiahui Wang Xing Chen Dr. Jun Li Prof. Huile Jin Prof. Zhi Yang Dr. Xi'an Chen Prof. Shun Wang 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(16):6468-6473
Rational design of hollow micro- and/or nano-structured cathodes as sulfur hosts has potential for high-performance lithium-sulfur batteries. However, their further commercial application is hindered because infusing sulfur into hollow hosts is hard to control and the interactions between high loading sulfur and electrolyte are poor. Herein, we designed hierarchical porous hollow carbon nanospheres with radially inwardly aligned supporting ribs to mitigate these problems. Such a structure could aid the sulfur infusion and maximize sulfur utilization owing to the well-ordered pore channels. This highly organized internal carbon skeleton can also enhance the electronic conductivity. The hollow carbon nanospheres with further nitrogen-doping as the sulfur host material exhibit good capacity and excellent cycling performance (0.044 % capacity degradation per each cycle for 1000 cycles). 相似文献
10.
Zihan Chen Dr. Licheng Miao Yancheng Fu Leyuan Shi Prof. Jinzhou Chen Prof. Xuying Liu Dr. Linlin Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(58):14444-14450
Lithium−sulfur (Li−S) batteries have attracted great attention due to their high theoretical energy density. The rapid redox conversion of lithium polysulfides (LiPS) is effective for solving the serious shuttle effect and improving the utilization of active materials. The functional design of the separator interface with fast charge transfer and active catalytic sites is desirable for accelerating the conversion of intermediates. Herein, a graphene-wrapped MnCO3 nanowire (G@MC) was prepared and utilized to engineer the separator interface. G@MC with active Mn2+ sites can effectively anchor the LiPS by forming the Mn−S chemical bond according to our theoretical calculation results. In addition, the catalytic Mn2+ sites and conductive graphene layer of G@MC could accelerate the reversible conversion of LiPS via the spontaneous “self-redox” reaction and the rapid electron transfer in electrochemical process. As a result, the G@MC-based battery exhibits only 0.038 % capacity decay (per cycle) after 1000 cycles at 2.0 C. This work affords new insights for designing the integrated functional interface for stable Li−S batteries. 相似文献
11.
Rongrong Li Hongjie Peng Qingping Wu Xuejun Zhou Jiang He Hangjia Shen Minghui Yang Chilin Li 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(29):12227-12236
Herein, we propose the construction of a sandwich-structured host filled with continuous 2D catalysis–conduction interfaces. This MoN-C-MoN trilayer architecture causes the strong conformal adsorption of S/Li2Sx and its high-efficiency conversion on the two-sided nitride polar surfaces, which are supplied with high-flux electron transfer from the buried carbon interlayer. The 3D self-assembly of these 2D sandwich structures further reinforces the interconnection of conductive and catalytic networks. The maximized exposure of adsorptive/catalytic planes endows the MoN-C@S electrode with excellent cycling stability and high rate performance even under high S loading and low host surface area. The high conductivity of this trilayer texture does not compromise the capacity retention after the S content is increased. Such a job-synergistic mode between catalytic and conductive functions guarantees the homogeneous deposition of S/Li2Sx, and avoids thick and devitalized accumulation (electrode passivation) even after high-rate and long-term cycling. 相似文献
12.
Kuz’mina E. V. Karaseva E. V. Chudova N. V. Ivanov A. L. Kolosnitsyn V. S. 《Russian Journal of Electrochemistry》2021,57(3):255-263
Russian Journal of Electrochemistry - The possibility of using carbon materials based on petroleum coke as the cheap and available active material for negative electrodes of lithium–sulfur... 相似文献
13.
Feifei Lei Yuqing Cao Yifang Fu Yunliang Li Prof. Runwei Wang Prof. Shilun Qiu Prof. Zongtao Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(58):13295-13304
Lithium–sulfur batteries, owing to the multi-electron participation in the redox reaction, possess enormous energy density, which has aroused much attention. Nevertheless, the detrimental shuttle effect, volume expansion, and electrical insulation of sulfur, have hindered their application. To improve the cyclability, a functional host, consisting of Co nanoparticles and N-doped hollow graphitized carbon (Co-NHGC) material, is elaborated, which has the advantages of: 1) the graphitized carbon material working as an electronic matrix to improve the utilization rate of sulfur; 2) the hollow structure relieving the stress change caused by volume expansion; 3) the rich active sites catalyze the electrochemical reaction of sulfur and entrap polysulfides. These advantages significantly improve the performance of the lithium–sulfur batteries. Accordingly, the S@Co-NHGC cathode exhibits excellent initial specific capacity, high coulombic efficiency, and excellent rate performance. This work utilizes a novel method of dopamine in situ etching of a metal–organic framework to synthetize the Co-NHGC host of sulfur, which will hopefully provide inspiration for other energy materials. 相似文献
14.
Zengjie Fan Dr. Bing Ding Hongshuai Guo Minyuan Shi Yadi Zhang Shengyang Dong Dr. Tengfei Zhang Prof. Dr. Hui Dou Prof. Dr. Xiaogang Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(45):10710-10717
Lithium–sulfur (Li–S) batteries are considered to be one of the most promising energy storage systems owing to their high energy density and low cost. However, their wide application is still limited by the rapid capacity fading. Herein, polydopamine (PDA)-coated N-doped hierarchical porous carbon spheres (NPC@PDA) are reported as sulfur hosts for high-performance Li-S batteries. The NPC core with abundant and interconnected pores provides fast electron/ion transport pathways and strong trapping ability towards lithium polysulfide intermediates. The PDA shell could further suppress the loss of lithium polysulfide intermediates through polar–polar interactions. Benefiting from the dual function design, the NPC/S@PDA composite cathode exhibits an initial capacity of 1331 mAh g−1 and remains at 720 mAh g−1 after 200 cycles at 0.5 C. At the pouch cell level with a high sulfur mass loading, the NPC/S@PDA composite cathode still exhibits a high capacity of 1062 mAh g−1 at a current density of 0.4 mA cm−2. 相似文献
15.
Li-Peng Hou Yuan Li Zheng Li Qian-Kui Zhang Dr. Bo-Quan Li Chen-Xi Bi Zi-Xian Chen Li-Ling Su Prof. Jia-Qi Huang Prof. Rui Wen Dr. Xue-Qiang Zhang Prof. Qiang Zhang 《Angewandte Chemie (International ed. in English)》2023,62(32):e202305466
Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5-trioxane (TO) and 1,2-dimethoxyethane (DME) as co-solvents is proposed to construct a high-mechanical-stability SEI by enriching organic components in Li−S batteries. The high-mechanical-stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic-rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO-based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries. 相似文献
16.
Lin Chen Prof. Liwu Huang Guojie Chen Dr. Xinlin Zhang Prof. Yungui Chen 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(41):8926-8934
Improving the electrical conductivity of sulfur, suppressing shuttle/dissolution of polysulfide, and enhancing reaction kinetics in Li–S batteries are essential for practical applications. Here, for the first time, we have used inexpensive oleic acid as a single carbon source, and have added commercial SiO2 as a template to form a porous structure, whereas introducing Fe(NO3)3 and Ni(NO3)2 as catalysts to increase the degree of graphitization. Moreover, the dual metal salts Fe(NO3)3 and Ni(NO3)2 can also form FeNi3 alloy, and our results show that FeNi3 nanoparticles accelerate the kinetic conversion reactions of polysulfide. By virtue of the well-developed porous structure and high degree of graphitization, the highly graphitized porous carbon-FeNi3 (GPC-FeNi3) has high conductivity to ensure fast charge transfer, and the hierarchically porous structure facilitates ion diffusion and traps polysulfide. Thus, a GPC-FeNi3/S cathode displays excellent electrochemical performance. At current rates of 0.2 and 1 C, a cathode of the GPC-FeNi3/S composite with a sulfur content of 70 % delivers high initial discharge capacities of 1108 and 880 mA h g−1, respectively, and retains reversible specific capacities of 850 mA h g−1 after 200 cycles at 0.2 C and 625 mA h g−1 after 400 cycles at 1 C. 相似文献
17.
Xiaojing Fan Dr. Furui Tan Prof. Fancheng Meng Prof. Jiehua Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(16):4040-4046
A new route for obtaining N-doped carbon nanosheets through an in situ solid-state thermal organic–inorganic polymerization and carbonization method, with glucose and melamine as precursors, due to different temperature intervals for glucose or melamine polymerization, is reported. At a current rate of 0.2 C, as a cathode for a lithium–sulfur cell, the N-doped carbon nanosheet/sulfur hybrid delivers a high capacity of 1313 and 722 mA h g−1 in the 1st and 200th cycles, respectively; these values are over 40 % higher than that of cells with glucose-derived carbon nanosheets. 相似文献
18.
Dr. Tao Ma Dr. Youxuan Ni Diantao Li Dr. Zhengtai Zha Dr. Song Jin Weijia Zhang Liqun Jia Qiong Sun Dr. Weiwei Xie Prof. Zhanliang Tao Prof. Jun Chen 《Angewandte Chemie (International ed. in English)》2023,62(43):e202310761
Despite carbonate electrolytes exhibiting good stability to sulfurized polyacrylonitrile (SPAN), their chemical incompatibility with lithium (Li) metal anode leads to poor electrochemical performance of Li||SPAN full cells. While the SPAN employs conventional ether electrolytes that suffer from the shuttle effect, leading to rapid capacity fading. Here, we tailor a dilute electrolyte based on a low solvating power ether solvent that is both compatible with SPAN and Li metal. Unlike conventional ether electrolytes, the weakly solvating ether electrolyte enables SPAN to undergo reversibly “solid–solid” conversion. It features an anion–rich solvation structure that allows for the formation of a robust cathode electrolyte interphase on the SPAN, effectively blocking the dissolution of polysulfides into the bulk electrolyte and avoiding the shuttle effect. What's more, the unique electrolyte chemistry endowed Li ions with fast electroplating kinetics and induced high reversibility Li deposition/stripping process from 25 °C to −40 °C. Based on tailored electrolyte, Li||SPAN full cells matched with high loading SPAN cathodes (≈3.6 mAh cm−2) and 50 μm Li foil can operate stably over a wide range of temperatures. Additionally, Li||SPAN pouch cell under lean electrolyte and 5 % excess Li conditions can continuously operate stably for over a month. 相似文献
19.
Kolosnitsyn D. V. Karaseva E. V. Kuz’mina E. V. Kolosnitsyn V. S. 《Russian Journal of Electrochemistry》2021,57(3):306-309
Russian Journal of Electrochemistry - In this work we considered the possibility of simulation of changes in the characteristics of lithium-sulfur batteries during cycling using an Adaptive... 相似文献
20.
Dr. Xuanxuan Bi Dr. Matthew Li Dr. Cong Liu Dr. Yifei Yuan Dr. Hao Wang Dr. Baris Key Dr. Rongyue Wang Dr. Reza Shahbazian-Yassar Dr. Larry A. Curtiss Dr. Jun Lu Dr. Khalil Amine 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(51):23178-23182
Lithium–oxygen (Li–O2) batteries have attracted extensive research interest due to their high energy density. Other than Li2O2 (a typical discharge product in Li–O2 batteries), LiOH has proved to be electrochemically active as an alternative product. Here we report a simple strategy to achieve a reversible LiOH-based Li–O2 battery by using a cation additive, sodium ions, to the lithium electrolyte. Without redox mediators in the cell, LiOH is detected as the sole discharge product and it charges at a low charge potential of 3.4 V. A solution-based reaction route is proposed, showing that the competing solvation environment of the catalyst and Li+ leads to LiOH precipitation at the cathode. It is critical to tune the cell chemistry of Li–O2 batteries by designing a simple system to promote LiOH formation/decomposition. 相似文献