首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foxtail millet (Setaria italica) is one of the most valuable species in economic terms in the genus Setaria and plays an important role in human nutrition, animal feed, and agriculture. The present study described chemical, physical, and quality aspects of seeds of foxtail millet. Furthermore, the fluid-dynamic behavior of the seeds was evaluated in a conical spouted bed, which has advantages in terms of promoting the cyclic and regular movement of the seed particles. Dynamic parameters of spouting (minimum spouting velocity, stable and peak pressure drop) were determined and compared with those obtained from empirical correlations available in the literature. The results obtained from physical characterization showed that the seeds can be classified as belonging to Group D of Geldart, having a non-rough surface, mean diameter of 1.75 mm, and sphericity of 0.74. Fluid-dynamics analysis showed that the seeds are suitable for processing in a spouted bed, which is in agreement with the results of particle physical characterization.  相似文献   

2.
CFD-DEM已经广泛应用到喷动床的研究中,其模拟的准确性与用于处理颗粒-流体相互作用的曳力模型密切相关。为了探究不同曳力模型对喷动床CFD-DEM模拟结果的影响,基于非结构化网格的喷动床仿真,使用7个曳力模型分别对锥底喷动床内气固两相运动进行了数值模拟。综合床层压降、喷动高度和颗粒速度特性三个方面,Wen-Yu模型和Gibilaro模型预测的气固两相运动最剧烈,其次是Di Felice模型、Syamlal-O’Brien模型、Gidaspow模型和Huilin-Gidaspow模型,BVK模型预测的气固两相运动最平缓。由于模拟的气固两相体系属于密相体系,Huilin-Gidaspow模型的光滑过渡函数没有产生效果,所以Gidaspow模型和Huilin-Gidaspow模型在各个方面的预测结果基本一致。  相似文献   

3.
The removal of volatile organic compounds by photocatalytic degradation is one of the safest and most effective ways of removing pollutants from the air. This process is highly affected by the type of reactor, light exposure, and hydrodynamics. For scale up purposes, continuous reactors with high capacity are required for treating large amounts of feedstock. In this work, two types of reactors based on different hydrodynamics, fluidized and spouted reactors, were designed to work under light irradiation inside the reactor. The efficiency of the reactors for volatile organic compound removal from high flow rates of air under Hg lamp irradiation using N–F-TiO2 photocatalyst was investigated. The performance of the fluidized bed and spouted bed were evaluated and compared at the same weight hourly space velocity of feed stream through the reactor. The results revealed that 80% of the initial acetaldehyde was removed in the fluidized bed after about 200 min, while in the spouted bed the acetaldehyde was totally removed after about 120 min.  相似文献   

4.
To eliminate some disadvantages of the conventional spouted bed dryers the mechanically spouted bed (MSB) system was developed. This dryer type is convenient to use inert particles providing an increased surface area for drying of materials of high-moisture content and heat sensitive materials. On three different drying tasks are demonstrated the experimental optimization of process parameters to obtain products of demanded quality. The main object was at drying of AIO(OH) suspension to preserve the particle size under 2.5μm and to obtain product with a moisture content of about 0.05 kg/kg (d.b.). For this reason a very thin particle coating and intensive abrasion had to be assured. At drying of tomato concentrates the thermoplasticity makes the process very difficult. To jump over the deliquescent and sticky state developed at the critical temperature-moisture content values a very short drying time (8-10 s) must be provided. The third task was to form powder-like product from bovine serum albumin (BSA) solution having very low solid content (2-4%). The selected process parameters given in this paper resulted in a mean particle size of less than 20 μm while the soluble oreserved orotein content was higher than 90%.  相似文献   

5.
研究喷动床内颗粒的流动特性对于喷动床的设计和优化具有重要意义。基于气固两相流流动的LBM-DEM四向耦合模型,对单孔射流喷动床中颗粒的流动进行数值模拟。其中,气相采用修正的格子玻尔兹曼方法,颗粒相采用离散单元法,流固之间受力的双向耦合基于牛顿第三定律,颗粒与颗粒及颗粒与壁面的受力双向耦合采用软球模型。模拟得到了流化过程、颗粒与气体的速度分布、床层膨胀高度变化以及床宽对流化过程的影响。结果表明,喷动床内存在强烈的内循环,床宽增加导致颗粒运动能力减弱,射流速度增加使颗粒运动更加剧烈,床层膨胀高度增加。  相似文献   

6.
In this work, the mixing and segregation of binary mixtures of particles with different sizes and densities in a pseudo-2D spouted bed were studied experimentally. A binary mixture of solid particles including sand, gypsum, and polyurethane was used. To determine the particles mass fraction, and their mixing and segregation in the bed, an image-processing technique was developed and used. Important hydrodynamic parameters, such as the axial and radial segregation profiles of the solid particles, were measured. The effects of air velocity, particle size, and particle mass fraction were also evaluated. The flow regime in the spouted bed and the time required for reaching the equilibrium state of the solid particles were discussed. The results showed that the segregation of solid particles and the time to equilibrium both decreased when the air velocity increased to much larger than the minimum spouting velocity. The axial segregation increased with the diameter ratio of the particles. Upon completion of the test, coarse particles were concentrated mainly in the spout region, while fine particles were aggregated in the annulus region. Examination of the flow pattern in the spouted bed showed that the particles near the wall had longer flow paths, while those near the spout region had shorter flow paths.  相似文献   

7.
A CFD-DEM reaction coupling model was established to simulate UF4 fluorination process, in which heat and mass transfer, heterogeneous chemical reaction, and particle shrinkage model were considered. The gas behavior was described by the conservation laws of mass, momentum, and energy. The solid phase is modeled with the discrete element method, considering the gas–solid interphase force, contact force, heat transfer, and chemical reaction models based on the discretized surface. Each particle can be individually tracked and associated with specific physical properties. The proposed CFD-DEM reaction coupling model based on particle shrinking reaction model with discretized surface was validated by the experimental and literature results at first. Then a multistage conical spouted bed was proposed and the process of UF4 fluoridation reaction in it was investigated. The fluidization characteristics and the concentration distribution of gaseous products in the spouted bed with an extended gas velocity range were obtained and analyzed. In addition, the effects of different parameters, such as superficial gas velocity, temperature, fluorine concentration, on fluoridation rate and the fluorine conversion rate were investigated based on the proposed CFD-DEM reaction coupling model. The results obtained in this work are beneficial for method development of the chemical reaction simulation research in particle scale using the CFD-DEM model, and useful for operation and equipment parameters design of the uranium tetrafluoride fluorinate industrial process in the future.  相似文献   

8.
Using a high-viscosity Newtonian fluid, glycerol, an experimental investigation was carried out to evaluate the stable spouting regime in conical spouted beds using four particle mixtures: a reference (monoparticles), a binary mixture, two ternary mixtures with flat and Gaussian distributions respectively. The mixtures were selected for particle diameters (dp) ranging from 1.09 to 4.98 mm and particle diameter ratios (dpL/dps) ranging from 1.98 to 4.0. Experimental data show that pressure fluctuation signals of the bed, as indicated by changes in their standard deviations, provide suitable information to identify the range of operational conditions for stable spouting. However, the analysis of skewness of curves of pressure fluctuation as a function of air velocity appears not sufficient to identify a particular flow regime. For glycerol in the spouting regime, the standard deviation is noted to increase with increasing glycerol concentration due to the growth of interparticle forces. The implications of these research findings on the drying of suspensions in conical spouted beds using glass bead mixtures are also discussed.  相似文献   

9.
A three-dimensional, Eulerian simulation was developed to describe isothermal, two-phase flow of the continuous (water) and dispersed (solid particles) phases in a rectangular spouted vessel. The mass and momentum conservation equations for each phase were solved using the finite volume technique, which treats each phase separately, while coupling them through drag, turbulence, and energy dissipation due to particle fluctuations. Particle–particle interactions via friction were also included.  相似文献   

10.
11.
Pressure drop is an essential parameter in the operation of conical spouted beds (CSB) and depends on its geometric factors and materials used. Irregular materials, like biomass, are complex to treat and, unlike other gas–solid contact methods, CSB turn out to be a suitable technology for their treatment. Artificial neural networks were used in this study for the prediction of operating and peak pressure drops, and their performance has been compared with that of empirical correlations reported in the literature. Accordingly, a multi-layer perceptron network with backward propagation was used due to its ability to model non-linear multivariate systems. The fitting of the experimental data of both operating and peak pressure drop was significantly better than those reported in the literature, specifically in the case of the peak pressure drop, with R2 being 0.92. Therefore, artificial neural networks have been proven suitable for the prediction of pressure drop in CSB.  相似文献   

12.
Flocculation time is conventionally believed to be proportional to the flocculation efficiency of a cylindrical fluidized bed flocculator. However, in a single-stage velocity gradient situation, the flocculation efficiency decreases when the optimal flocculation time is exceeded. A multi-stage velocity gradient was established in a cylindrical fluidized bed flocculator, based on the hydraulic classification theory. This multi-stage velocity gradient fluidized bed flocculator (MGF) created a more suitable environment for floc growth and protection, which was confirmed by the size distribution of flocs along the bed height. Correspondingly, the abatement efficiencies for Kaolin slurry and dyed wastewater treatment in the MGF were enhanced by 5–10%, and by 7–20%, respectively, compared with those in the single-stage velocity gradient fluidized bed flocculators (SGFs). The initial bed height distribution ratio along the velocity gradients was an important factor for MGF optimization.  相似文献   

13.
Using a high-viscosity Newtonian fluid, glycerol, an experimental investigation was carried out to evaluate the stable spouting regime in conical spouted beds using four particle mixtures: a reference (monoparticles), a binary mixture, two ternary mixtures with flat and Gaussian distributions respectively. The mixtures were selected for particle diameters (dp) ranging from 1.09 to 4.98 mm and particle diameter ratios (dpL/dps) ranging from 1.98 to 4.0. Experimental data show that pressure fluctuation signals of the bed, as indicated by changes in their standard deviations, provide suitable information to identify the range of operational conditions for stable spouting. However, the analysis of skewness of curves of pressure fluctuation as a function of air velocity appears not sufficient to identify a particular flow regime. For glycerol in the spouting regime, the standard deviation is noted to increase with increasing glycerol concentration due to the growth of interparticle forces. The implications of these research findings on the drying of suspensions in conical spouted beds using glass bead mixtures are also discussed.  相似文献   

14.
15.
16.
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phases was predicted using the Eulerian-Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas-solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall.  相似文献   

17.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

18.
傅里叶级数法被用于计算输液管道的临界流速,与有限元等数值法相比,更为简单可靠。  相似文献   

19.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

20.
The application of a volume average Navier-Stokes equation for the prediction of pressure drop in packed beds consisting of uniform spherical particles is presented. The development of the bed permeability from an assumed porous microstructure model is given. The final model is quasi-empirical in nature, and is able to correlate a wide variety of literature data over a large Reynolds number range. In beds with wall effects present the model correlates experimental data with an error of less than 10%. Numerical solutions of the volume averaged equation are obtained using a penalty finite element method.Nomenclatures d length of a representative unit cell - d e flow length in Representative Unit Cell - d p characteristic pore size - D T column diameter - D P equivalent particle diameter - e v energy loss coefficient for elbow - f app apparent friction factor - f v packed bed friction factor, defined by Equation (30) - F term representing impermeability of the porous medium - I integral defined by Equation (3) - L length of packed column - N Number of RUC in model microstructure - P pressure - P interstitial pressure - P pressure deviation - Rep Reynolds number,v p d p/ - Res Reynolds number,v s d/gm - Reb Reynolds number,v s D p/ - S fs fluid solid contact area - T tortuosity - v fluid velocity - v velocity deviation - v p velocity in a pore - v s superficial velocity in the medium - v interstitial velocity - V o total volume of representative unit cell - V pore volume of representative unit cell - change in indicated property - u normal vector onS fs - porosity - viscosity - density - coefficient in unconsolidated permeability model  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号