首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Covalent organic frameworks (COFs) are an emerging class of porous crystalline materials which are completely constructed from organic building blocks through robust covalent bonds. High surface areas, compositional and structural tunability, low density, and superior stability have rendered COF candidates in a variety of applications, such as adsorption and separation, catalysis, electronics, chemical sensing, optics, and so forth. To better understand the structures and properties of COFs as well as the design principles, it is of great significance to learn about the linkages formed during synthetic reactions that contribute to the high crystallinity and stability of COFs. In this review, we will first discuss various linkages that have been utilized for COF construction up to date, followed by an outline of their miscellaneous applications, providing a comprehensive and detailed overview in this file.  相似文献   

2.
Covalent organic frameworks (COFs) are crystalline porous organic materials that hold a wealth of potential applications across various fields. The development of COFs, however, is significantly impeded by the dearth of efficient synthetic methods. The traditional solvothermal approach, while prevalent, is fraught with challenges such as complicated processes, excessive energy consumption, long reaction times, and limited scalability, rendering it unsuitable for practical applications. The quest for simpler, quicker, more energy-efficient, and environmentally benign synthetic strategies is thus paramount for bridging the gap between academic COF chemistry and industrial application. This Review provides an overview of the recent advances in alternative COF synthetic methods, with a particular emphasis on energy input. We discuss representative examples of COF synthesis facilitated by microwave, ultrasound, mechanic force, light, plasma, electric field, and electron beam. Perspectives on the advantages and limitations of these methods against the traditional solvothermal approach are highlighted.  相似文献   

3.
Two-dimensional layered covalent organic frameworks (2D COFs) organize π-electron systems into ordered structures ideal for exciton and charge transport and exhibit permanent porosity available for subsequent functionalization. A 2D COF with the largest pores reported to date was synthesized by condensing 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and 4,4'-diphenylbutadiynebis(boronic acid) (DPB). The COF was prepared as both a high surface area microcrystalline powder as well as a vertically oriented thin film on a transparent single-layer graphene/fused silica substrate. Complementary molecular dynamics and density functional theory calculations provide insight into the interlayer spacing of the COF and suggest that adjacent layers are horizontally offset by 1.7-1.8 ?, in contrast to the eclipsed AA stacking typically proposed for these materials.  相似文献   

4.
Zhao  Wei  Qiao  Jia  Ning  Tian-Li  Liu  Xi-Kui 《高分子科学》2018,36(1):1-7
A novel scale-up ambient pressure synthetic strategy for the preparation of imine-based covalent organic frameworks (COFs) was proposed through dynamic imine exchange reaction mechanism.The obtained COFs exhibited good crystallinity and much higher porosity comparable to their solvothermally synthesized counterparts.Moreover,under ambient pressure,the COF nanofibers could readily grow on the surface of polyimide films,and the resulted nanocomposite film showed an interesting colorimetric acid-responsive behavior.  相似文献   

5.
Two-dimensional covalent organic frameworks (COFs) are polymer networks that organize molecular building blocks into porous, layered structures of interest for organic optoelectronic and energy storage devices. Current synthetic methods produce these materials as either insoluble, microcrystalline powders or as oriented thin films on various substrates, including single-layer graphene (SLG). Under these conditions, COF thin films form on both the graphene-coated and bare regions of the substrate, suggesting uncontrolled nucleation processes that occur either in solution or nonselectively on different surfaces. Here, we describe modified polymerization conditions that provide COF films selectively on SLG. This finding enables COF films to be grown on lithographically patterned SLG substrates, which provide insight into the uniformity of film growth across the substrate and factors relevant to their nucleation and growth. The ability to grow COF films selectively on lithographically patterned SLG will facilitate their integration into devices. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 378–384  相似文献   

6.
Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4′,4′′,4′′′-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67Sr0.33MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to −26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.  相似文献   

7.
Hybrid 2D–2D materials composed of perpendicularly oriented covalent organic frameworks (COFs) and graphene were prepared and tested for energy storage applications. Diboronic acid molecules covalently attached to graphene oxide (GO) were used as nucleation sites for directing vertical growth of COF‐1 nanosheets (v‐COF‐GO). The hybrid material has a forest of COF‐1 nanosheets with a thickness of 3 to 15 nm in edge‐on orientation relative to GO. The reaction performed without molecular pillars resulted in uncontrollable growth of thick COF‐1 platelets parallel to the surface of GO. The v‐COF‐GO was converted into a conductive carbon material preserving the nanostructure of precursor with ultrathin porous carbon nanosheets grafted to graphene in edge‐on orientation. It was demonstrated as a high‐performance electrode material for supercapacitors. The molecular pillar approach can be used for preparation of many other 2D‐2D materials with control of their relative orientation.  相似文献   

8.
9.
通过后修饰的方法, 在共价有机框架(COFs)材料JUC-500的孔道中引入光敏性的偶氮苯小分子, 合成了具有光热刺激响应的共价有机框架材料JUC-501. 在紫外线和加热作用下, 孔道中的偶氮苯会发生可逆的顺-反异构变化, 对染料污染物甲基橙(MO)表现出优异的可逆吸附与释放性能.  相似文献   

10.
Porous crystalline materials, such as covalent organic frameworks (COFs), have emerged as some of the most important materials over the last two decades due to their excellent physicochemical properties such as their large surface area and permanent, accessible porosity. On the other hand, thiophene derivatives are common versatile scaffolds in organic chemistry. Their outstanding electrical properties have boosted their use in different light-driven applications (photocatalysis, organic thin film transistors, photoelectrodes, organic photovoltaics, etc.), attracting much attention in the research community. Despite the great potential of both systems, porous COF materials based on thiophene monomers are scarce due to the inappropriate angle provided by the latter, which hinders its use as the building block of the former. To circumvent this drawback, researchers have engineered a number of thiophene derivatives that can form part of the COFs structure, while keeping their intrinsic properties. Hence, in the present minireview, we will disclose some of the most relevant thiophene-based COFs, highlighting their basic components (building units), spectroscopic properties and potential light-driven applications.  相似文献   

11.
张安  张娟 《色谱》2022,40(11):966-978
基于在碱性环境下硼酸能与顺式二醇化合物可逆共价结合形成稳定的五元或六元环酯,而在酸性环境下环酯开环释放顺式二醇化合物这一特性,设计合成高效、高选择性、高富集性能的硼亲和材料的研究备受关注。近年来,许多研究工作者合成了各种类型的硼亲和材料,应用于高选择性富集顺式二醇化合物。金属有机骨架(MOFs)和共价有机骨架(COFs)由于具有孔径可调、高孔隙率、高比表面积、骨架结构可调和化学及热稳定性良好等特点,被广泛应用于色谱分离和样品前处理领域。为赋予MOFs和COFs材料对顺式二醇化合物的富集选择性,各种不同结构和不同种类的硼酸修饰的MOFs和COFs被合成出来。该综述主要是对近几年来80余篇源于科学引文索引关于硼酸功能化MOFs和COFs的种类、合成方法及其应用文章的总结,包括“金属配体-片段共组装”“合成后修饰”和“自下而上”的硼酸功能化多孔材料的修饰策略,以及硼酸功能化MOFs和COFs的种类,介绍了其在化学分析和生物分析领域的发展概况和应用前景,客观评价了硼酸功能化MOFs和COFs的区别和优缺点。该文旨在让研究人员能够充分了解近几年硼酸功能化多孔有机骨架材料的研究现状、掌握合成思路和方法,为其应用提供一定的理论指导和技术支撑,为加快硼酸功能化多孔有机骨架材料的商业化脚步贡献绵薄之力。  相似文献   

12.
Owing to their permanent porosity, highly ordered and extended structure, good chemical stability, and tunability, covalent organic frameworks (COFs) have emerged as a new type of organic materials that can offer various applications in different fields. Benefiting from the huge database of organic reactions, the required functionality of COFs can be readily achieved by modification of the corresponding organic functional groups on either polymerizable monomers or established COF frameworks. This striking feature allows homochiral covalent organic frameworks (HCCOFs) to be reasonably designed and synthesized, as well as their use as a unique platform to fabricate asymmetric catalysts. This contribution provides an overview of new progress in HCCOF-based asymmetric catalysis, including design, synthesis, and their application in asymmetric organic synthesis. Moreover, major challenges and developing trends in this field are also discussed. It is anticipated that this review article will provide some new insights into HCCOFs for heterogeneous asymmetric catalysis and help to encourage further contributions in this young but promising field.  相似文献   

13.
Developing effective synthetic strategies as well as enriching functionalities for sp2‐carbon‐linked covalent organic frameworks (COFs) still remains a challenge. Now, taking advantage of a variant of Knoevenagel condensation, a new fully conjugated COF ( g‐C34N6‐COF ) linked by unsubstituted C=C bonds was synthesized. Integrating 3,5‐dicyano‐2,4,6‐trimethylpyridine and 1,3,5‐triazine units into the molecular framework leads to the enhanced π‐electron communication and electrochemical activity. This COF shows uniform nanofibrous morphology. By assembling it with carbon nanotubes, a flexible thin‐film electrode for a micro‐supercapacitor (MSC) can be easily obtained. The resultant COF‐based MSC shows an areal capacitance of up to 15.2 mF cm?2, a high energy density of up to 7.3 mWh cm?3, and remarkable rate capability. These values are among the highest for state‐of‐the‐art MSCs. Moreover, this device exhibits excellent flexibility and integration capability.  相似文献   

14.
Optimizing the electronic structure of covalent organic framework (COF) photocatalysts is essential for maximizing photocatalytic activity. Herein, we report an isoreticular family of multivariate COFs containing chromenoquinoline rings in the COF structure and electron-donating or withdrawing groups in the pores. Intramolecular donor-acceptor (D-A) interactions in the COFs allowed tuning of local charge distributions and charge carrier separation under visible light irradiation, resulting in enhanced photocatalytic performance. By optimizing the optoelectronic properties of the COFs, a photocatalytic uranium extraction efficiency of 8.02 mg/g/day was achieved using a nitro-functionalized multicomponent COF in natural seawater, exceeding the performance of all COFs reported to date. Results demonstrate an effective design strategy towards high-activity COF photocatalysts with intramolecular D-A structures not easily accessible using traditional synthetic approaches.  相似文献   

15.
Covalent organic frameworks (COFs) are attractive materials receiving increasing interest in the literature due to their crystallinity, large surface area, and pore uniformity. Their properties can be tailored towards specific applications by judicious design of COF building blocks, giving access to tailor-made pore sizes and surfaces. In this Concept article, developments in the field of COFs that have allowed these materials to be explored for contaminant adsorption are discussed. Strategies to obtain water-stable materials with highly ordered structures and large surface areas are reviewed. Post-synthetic modification approaches, by which pore surfaces can be tuned to target specific contaminants, are described. Recent advances in COF formulations, crucial for future implementation in adsorption devices, are highlighted. At the end, future challenges which need to be addressed to allow for the deployment of COFs for the capture of water contaminants will be discussed.  相似文献   

16.
Covalent‐Organic Frameworks (COFs) are a new family of 2D and 3D highly porous and crystalline materials built of light elements, such as boron, oxygen and carbon. For all 2D COFs, an AA stacking arrangement has been reported on the basis of experimental powder XRD patterns, with the exception of COF‐1 (AB stacking). In this work, we show that the stacking of 2D COFs is different as originally suggested: COF‐1, COF‐5, COF‐6 and COF‐8 are considerably more stable if their stacking arrangement is either serrated or inclined, and layers are shifted with respect to each other by ~1.4 Å compared with perfect AA stacking. These structures are in agreement with to date experimental data, including the XRD patterns, and lead to a larger surface area and stronger polarisation of the pore surface.  相似文献   

17.
Mechanistic understanding into the formation and growth of imine-linked two-dimensional (2D) covalent organic frameworks (COFs) is needed to improve their materials quality and access larger crystallite sizes, both of which limit the promise of 2D COFs and 2D polymerization techniques. Here we report a previously unknown temperature-dependent depolymerization of colloidal 2D imine-linked COFs, which offers a new means to improve their crystallinity. 2D COF colloids form at room temperature but then depolymerize when their reaction mixtures are heated to 90 °C. As the solutions are cooled back to room temperature, the 2D COFs repolymerize and crystallize with improved crystallinity and porosity, as characterized by X-ray diffraction, infrared spectroscopy and N2 porosimetry. The evolution of COF crystallinity during the solvothermal depolymerization and repolymerization processes was characterized by in situ wide angle X-ray scattering, and the concentrations of free COF monomers as a function of temperature were quantified by variable temperature 1H NMR spectroscopy. The ability of a 2D COF to depolymerize under these conditions depends on both the identity of the COF and its initial materials quality. For one network formed at room temperature (TAPB-PDA COF), a first depolymerization process is nearly complete, and the repolymerization yields materials with dramatically enhanced crystallinity and surface area. Already recrystallized materials partially depolymerize upon heating their reaction mixtures a second time. A related 2D COF (TAPB-DMTA COF) forms initially with improved crystallinity compared to TAPB-PDA COF and then partially depolymerizes upon heating. These results suggest that both high materials quality and network-dependent properties, such as interlayer interaction strength, influence the extent to which 2D COFs resist depolymerization. These findings offer a new means to recrystallize or solvent anneal 2D COFs and may ultimately inform crystallization conditions for obtaining large-area imine-linked two-dimensional polymers from solution.

Conditions for which imine-linked 2D COF polymerizations are temperature-sensitive are identified that enable a dissolution/repolymerization process akin to molecular recrystallization.  相似文献   

18.
《中国化学快报》2023,34(1):107201
Development of adsorbent materials for highly efficient iodine capture is high demand from the perspective of ecological environment and human health. Herein, the two kinds of thiophene-based covalent organic frameworks (COFs) with different morphologies were synthesized by solvothermal reaction using thieno[3,2-b]thiophene-2,5-dicarbaldehyde (TT) as the aldehyde monomer and tri(4-aminophenyl)benzene (PB) or tris(4-aminophenyl)amine (PA) as the amino monomer (denoted as PB-TT COF and PA-TT COF) and the as-prepared two heteroatoms-rich COFs possessed many excellent properties, including high thermal stability and abundant binding sites. Among them, PB-TT COF exhibited ultra-high iodine uptake up to 5.97 g/g in vapor, surpassing most of adsorbents previously reported, which was ascribed to its high specific surface (1305.3 m2/g). Interestingly, PA-TT COF with low specific surface (48.6 m2/g) showed good adsorption ability for iodine in cyclohexane solution with uptake value of 750 mg/g, which was 2.38 times higher than that obtained with PB-TT COF due to its unique sheet-like morphology. Besides, the two COFs possessed good reusability, high selectivity and iodine retention ability. Based on experimental results, the adsorption mechanisms of both COFs were studied, revealing that iodine was captured by the physical-chemical adsorption. Furthermore, the both COFs showed excellent adsorption ability in real radioactive seawater treated safely, demonstrating their great potential in real environment.  相似文献   

19.
Developing new materials for the fabrication of proton exchange membranes (PEMs) for fuel cells is of great significance. Herein, a series of highly crystalline, porous, and stable new covalent organic frameworks (COFs) have been developed by a stepwise synthesis strategy. The synthesized COFs exhibit high hydrophilicity and excellent stability in strong acid or base (e.g., 12 m NaOH or HCl) and boiling water. These features make them ideal platforms for proton conduction applications. Upon loading with H3PO4, the COFs (H3PO4@COFs) realize an ultrahigh proton conductivity of 1.13×10?1 S cm?1, the highest among all COF materials, and maintain high proton conductivity across a wide relative humidity (40–100 %) and temperature range (20–80 °C). Furthermore, membrane electrode assemblies were fabricated using H3PO4@COFs as the solid electrolyte membrane for proton exchange resulting in a maximum power density of 81 mW cm?2 and a maximum current density of 456 mA cm?2, which exceeds all previously reported COF materials.  相似文献   

20.
Ordered π‐columnar structures found in covalent organic frameworks (COFs) render them attractive as smart materials. However, external‐stimuli‐responsive COFs have not been explored. Here we report the design and synthesis of a photoresponsive COF with anthracene units as the photoresponsive π‐building blocks. The COF is switchable upon photoirradiation to yield a concavo‐convex polygon skeleton through the interlayer [4π+4π] cycloaddition of anthracene units stacked in the π‐columns. This cycloaddition reaction is thermally reversible; heating resets the anthracene layers and regenerates the COF. These external‐stimuli‐induced structural transformations are accompanied by profound changes in properties, including gas adsorption, π‐electronic function, and luminescence. The results suggest that COFs are useful for designing smart porous materials with properties that are controllable by external stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号