共查询到20条相似文献,搜索用时 15 毫秒
1.
Xiangcong Wang Moxuan Zhang Ranran Zhu Zhongshan Wu Fanhong Wu Zhonghua Wang Yanyan Yu 《Molecules (Basel, Switzerland)》2022,27(2)
PI3Kα is one of the potential targets for novel anticancer drugs. In this study, a series of 2-difluoromethylbenzimidazole derivatives were studied based on the combination of molecular modeling techniques 3D-QSAR, molecular docking, and molecular dynamics. The results showed that the best comparative molecular field analysis (CoMFA) model had q2 = 0.797 and r2 = 0.996 and the best comparative molecular similarity indices analysis (CoMSIA) model had q2 = 0.567 and r2 = 0.960. It was indicated that these 3D-QSAR models have good verification and excellent prediction capabilities. The binding mode of the compound 29 and 4YKN was explored using molecular docking and a molecular dynamics simulation. Ultimately, five new PI3Kα inhibitors were designed and screened by these models. Then, two of them (86, 87) were selected to be synthesized and biologically evaluated, with a satisfying result (22.8 nM for 86 and 33.6 nM for 87). 相似文献
2.
Kashif Rafiq Najeeb Ur Rehman Sobia Ahsan Halim Majid Khan Ajmal Khan Ahmed Al-Harrasi 《Molecules (Basel, Switzerland)》2022,27(3)
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a–l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a–l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II. 相似文献
3.
Based on our previous researches, a novel phenylpyrimidine pharmacophore model was proposed and fifteen derivatives were synthesized and characterized by means of spectroscopy methods. The inhibitory effects of them were screened against HeLa cell line by virtue of MTT assay in vitro. The results indicate some of the phenylpyrimidine derivatives exhibit potent biological activities. Among them, compounds 6g and 6h exhibit the best activity at half maximal inhibitory concentrations of 1.5 and 2.8 μmol/L, respectively. These compounds also exhibit good activities against HepG2 cell line and MCF-7 cell line. FLT-3 kinase was screened as the most potent molecular target. Computational docking between compound 6g and FLT-3 was carried out to interpret the binding mode. The results show phenylpyrimidine derivatives have effective antitumor activities, which provides a base for further research of them as antitumor agents. 相似文献
4.
Ehab M. Abdalla Safaa S. Hassan Hussein H. Elganzory Samar A. Aly Heba Alshater 《Molecules (Basel, Switzerland)》2021,26(19)
New Pb(II), Mn(II), Hg(II), and Zn(II) complexes, derived from 4-(4-chlorophenyl)-1-(2-(phenylamino)acetyl)thiosemicarbazone, were synthesized. The compounds with general formulas, [Pb(H2L)2(OAc)2]ETOH.H2O, [Mn(H2L)(HL)]Cl, [Hg2(H2L)(OH)SO4], and [Zn(H2L)(HL)]Cl, were characterized by physicochemical and theoretical studies. X-ray diffraction studies showed a decrease in the crystalline size of compounds that were exposed to gamma irradiation (γ-irradiation). Thermal studies of the synthesized complexes showed thermal stability of the Mn(II) and Pb(II) complexes after γ-irradiation compared to those before γ–irradiation, while no changes in the Zn(II) and Hg(II) complexes were observed. The optimized geometric structures of the ligand and metal complexes are discussed regarding density functional theory calculations (DFT). The antimicrobial activities of the ligand and metal complexes against several bacterial and fungal stains were screened before and after irradiation. The Hg(II) complex has shown excellent antibacterial activity before and after γ-irradiation. In vitro cytotoxicity screening of the ligand and the Mn(II) and Zn(II) complexes before and after γ-irradiation disclosed that both the ligand and Mn(II) complex exhibited higher activity against human liver (Hep-G2) than Zn(II). Molecular docking was performed on the active site of MK-2 and showed good results. 相似文献
5.
Shoaib Khan Shahid Iqbal Fazal Rahim Mazloom Shah Rafaqat Hussain Hamad Alrbyawi Wajid Rehman Ayed A. Dera Liaqat Rasheed H. H. Somaily Rami Adel Pashameah Eman Alzahrani Abd-ElAziem Farouk 《Molecules (Basel, Switzerland)》2022,27(19)
Amylase and glucosidase enzymes are the primary harmful source in the development of the chronic condition known as diabetes mellitus. The main function of these enzymes is to break the macromolecules into simple sugar units which are directly involved in the solubility of blood, hence increasing blood glucose levels. To overcome this effect, there is a need for a potent and effective inhibitor that inhibits the conversion of macromolecules of sugar into its smaller units. In this regard, we synthesized thiazolidinone-based indole derivatives (1–20). The synthesized derivatives were evaluated for α-amylase and α-glucosidase inhibitory activity. Different substituted derivatives were found with moderate to good potentials having IC50 values ranging, for α-amylase, from 1.50 ± 0.05 to 29.60 ± 0.40 μM and, for α-glucosidase, from IC50 = 2.40 ± 0.10 to 31.50 ± 0.50 μM. Among the varied substituted compounds, the most active analogs four (1.80 ± 0.70 and 2.70 ± 0.70), five (1.50 ± 0.05 and 2.40 ± 0.10, respectively) of the series showed few folds better inhibitory activity than standard drug acarbose (IC50 = 10.20 ± 0.10 and 11.70 ± 0.10 μM, respectively). Moreover, structure–activity relationship (SAR) was established and binding interactions were analyzed for ligands and proteins (α-amylase and α-glucosidase) through a molecular docking study. 相似文献
6.
Md. Ruhul Amin Farhana Yasmin Mohammed Anowar Hosen Sujan Dey Shafi Mahmud Md. Abu Saleh Talha Bin Emran Imtiaj Hasan Yuki Fujii Masao Yamada Yasuhiro Ozeki Sarkar Mohammad Abe Kawsar 《Molecules (Basel, Switzerland)》2021,26(22)
A series of methyl β-D-galactopyranoside (MGP, 1) analogs were selectively acylated with cinnamoyl chloride in anhydrous N,N-dimethylformamide/triethylamine to yield 6-O-substitution products, which was subsequently converted into 2,3,4-tri-O-acyl analogs with different acyl halides. Analysis of the physicochemical, elemental, and spectroscopic data of these analogs revealed their chemical structures. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) showed promising antifungal functionality comparing to their antibacterial activities. Minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) tests were conducted for four compounds (4, 5, 6, and 9) based on their activity. MTT assay showed low antiproliferative activity of compound 9 against Ehrlich’s ascites carcinoma (EAC) cells with an IC50 value of 2961.06 µg/mL. Density functional theory (DFT) was used to calculate the thermodynamic and physicochemical properties whereas molecular docking identified potential inhibitors of the SARS-CoV-2 main protease (6Y84). A 150-ns molecular dynamics simulation study revealed the stable conformation and binding patterns in a stimulating environment. In-silico ADMET study suggested all the designed molecules to be non-carcinogenic, with low aquatic and non-aquatic toxicity. In summary, all these antimicrobial, anticancer and in silico studies revealed that newly synthesized MGP analogs possess promising antiviral activity, to serve as a therapeutic target for COVID-19. 相似文献
7.
Zhengyue Ma Xinghua Zhang Shikui Wang Yang He Gengliang Yang Beilei Li Junjie Yang Yuejuan Lu Jiewei Sun 《中国化学》2011,29(4):757-764
As epoxy functional group has high anticancer activity, α,β‐epoxyketones were designed and synthesized as new anticancer agents, and their structures were confirmed by UV, 1H NMR, IR, MS technigeces and elemental analysis. Their in vitro anticancer activities were evaluated by MTT method and the results showed that the compound 4c exhibited good activity with IC50 of 17.8, 22.0 and 24.1 µg/mL against A‐549, Hela and HepG2 cells, respectively. The dose of LD50 of the mice by intragastric administration was 1864.4 mg/kg. Therefore, the α,β‐epoxyketones could potentially provide as new anticancer agents. 相似文献
8.
Kristina Pavi Maja Beus Goran Poje Lidija Uzelac Marijeta Kralj Zrinka Raji 《Molecules (Basel, Switzerland)》2021,26(21)
As cancer remains one of the major health burdens worldwide, novel agents, due to the development of resistance, are needed. In this work, we designed and synthesized harmirins, which are hybrid compounds comprising harmine and coumarin scaffolds, evaluated their antiproliferative activity, and conducted cell localization and cell cycle analysis experiments. Harmirins were prepared from the corresponding alkynes and azides under mild reaction conditions using Cu(I) catalyzed azide–alkyne cycloaddition, leading to the formation of the 1H-1,2,3-triazole ring. Antiproliferative activity of harmirins was evaluated in vitro against four human cancer cell lines (MCF-7, HCT116, SW620, and HepG2) and one human non-cancer cell line (HEK293T). The most pronounced activities were exerted against MCF-7 and HCT116 cell lines (IC50 in the single-digit micromolar range), while the most selective harmirins were 5b and 12b, substituted at C-3 and O-7 of the β-carboline core and bearing methyl substituent at position 6 of the coumarin ring (SIs > 7.2). Further experiments demonstrated that harmirin 12b is localized exclusively in the cytoplasm. In addition, it induced a strong G1 arrest and reduced the percentage of cells in the S phase, suggesting that it might exert its antiproliferative activity through inhibition of DNA synthesis, rather than DNA damage. In conclusion, harmirin 12b is a novel harmine and coumarin hybrid with significant antiproliferative activity and warrants further evaluation as a potential anticancer agent. 相似文献
9.
Vanessa Brito Adriana Oliveira Santos Gilberto Alves Paulo Almeida Samuel Silvestre 《Molecules (Basel, Switzerland)》2022,27(18)
A series of novel 21E-arylidene-4-azapregn-5-ene steroids has been successfully designed, synthesized and structurally characterized, and their antiproliferative activity was evaluated in four different cell lines. Within this group, the 21E-(pyridin-3-yl)methylidene derivative exhibited significant cytotoxic activity in hormone-dependent cells LNCaP (IC50 = 10.20 µM) and T47-D cells (IC50 = 1.33 µM). In PC-3 androgen-independent cells, the steroid 21E-p-nitrophenylidene-4-azapregn-5-ene was the most potent of this series (IC50 = 3.29 µM). Considering these results, the 21E-(pyridin-3-yl)methylidene derivative was chosen for further biological studies on T47-D and LNCaP cells, and it was shown that this azasteroid seems to lead T47-D cells to apoptotic death. Finally, molecular docking studies were performed to explore the affinity of these 4-azapregnene derivatives to several steroid targets, namely 5α-reductase type 2, estrogen receptor α, androgen receptor and CYP17A1. In general, compounds presented higher affinity to 5α-reductase type 2 and estrogen receptor α. 相似文献
10.
Faisal K. Algethami Ilyes Saidi Hani Nasser Abdelhamid Mohamed R. Elamin Babiker Y. Abdulkhair Amani Chrouda Hichem Ben Jannet 《Molecules (Basel, Switzerland)》2021,26(17)
Diabetes mellitus is a major health problem globally. The management of carbohydrate digestion provides an alternative treatment. Flavonoids constitute the largest group of polyphenolic compounds, produced by plants widely consumed as food and/or used for therapeutic purposes. As such, isoxazoles have attracted the attention of medicinal chemists by dint of their considerable bioactivity. Thus, the main goal of this work was to discover new hybrid molecules with properties of both flavonoids and isoxazoles in order to control carbohydrate digestion. Moreover, the trifluoromethyl group is a key entity in drug development, due to its strong lipophilicity and metabolic stability. Therefore, the present work describes the condensation of a previously synthesized trifluoromethylated flavonol with different aryl nitrile oxides, affording 13 hybrid molecules indicated as trifluoromethylated flavonoid-based isoxazoles. The structures of the obtained compounds were deduced from by 1H NMR, 13C NMR, and HRMS analysis. The 15 newly synthesized compounds inhibited the activity of α-amylase with an efficacy ranging from 64.5 ± 0.7% to 94.7 ± 1.2% at a concentration of 50 μM, and with IC50 values of 12.6 ± 0.2 μM–27.6 ± 1.1 μM. The most effective compounds in terms of efficacy and potency were 3b, 3h, 3j, and 3m. Among the new trifluoromethylated flavonoid-based isoxazoles, the compound 3b was the most effective inhibitor of α-amylase activity (PI = 94.7 ± 1.2% at 50 μM), with a potency (IC50 = 12.6 ± 0.2 μM) similar to that of the positive control acarbose (IC50 = 12.4 ± 0.1 μM). The study of the structure–activity relationship based on the molecular docking analysis showed a low binding energy, a correct mode of interaction in the active pocket of the target enzyme, and an ability to interact with the key residues of glycosidic cleavage (GLU-230 and ASP-206), explaining the inhibitory effects of α-amylase established by several derivatives. 相似文献
11.
Wenqing Jia Shuyu Luo Wennan Zhao Weiren Xu Yuxu Zhong Dexin Kong 《Molecules (Basel, Switzerland)》2022,27(19)
PI3Kδ is a key mediator of B-cell receptor signaling and plays an important role in the pathogenesis of certain hematological malignancies, such as chronic lymphocytic leukemia. Idelalisib, which targets PI3Kδ specifically, is the first approved PI3K inhibitor for cancer therapy. Recently, we carried out virtual screening, cell-based assays, adapta kinase assays, and molecular dynamic analysis to discover novel PI3Kδ inhibitors and identified NSC348884 as a lead PI3Kδ inhibitor. NSC348884 had an excellent docking score, potent PI3Kδ-inhibitory activity, antitumor effects on various cancer cell lines, and a favorable binding mode with the active site of PI3Kδ. Moreover, through the structural modification of NSC348884, we further discovered comp#1, which forms H-bonds with both Val828 and Lys779 in the ATP binding pocket of PI3Kδ, with a more favorable conformation binding to PI3Kδ. In addition, we found that N1, N1, N2-trimethyl-N2-((6-methyl-1H-benzo[d]imidazol-2-yl) methyl) ethane-1,2-diamine might be a potential scaffold structure. Thus, the result of this study provides a far more efficient approach for discovering novel inhibitors targeting PI3Kδ. 相似文献
12.
Priyanka Matin Umme Hanee Muhammad Shaiful Alam Jae Eon Jeong Mohammed Mahbubul Matin Md. Rezaur Rahman Shafi Mahmud Mohammed Merae Alshahrani Bonglee Kim 《Molecules (Basel, Switzerland)》2022,27(13)
One-step direct unimolar valeroylation of methyl α-D-galactopyranoside (MDG) mainly furnished the corresponding 6-O-valeroate. However, DMAP catalyzed a similar reaction that produced 2,6-di-O-valeroate and 6-O-valeroate, with the reactivity sequence as 6-OH > 2-OH > 3-OH,4-OH. To obtain novel antimicrobial agents, 6-O- and 2,6-di-O-valeroate were converted into several 2,3,4-tri-O- and 3,4-di-O-acyl esters, respectively, with other acylating agents in good yields. The PASS activity spectra along with in vitro antimicrobial evaluation clearly indicated that these MDG esters had better antifungal activities than antibacterial agents. To rationalize higher antifungal potentiality, molecular docking was conducted with sterol 14α-demethylase (PDB ID: 4UYL, Aspergillus fumigatus), which clearly supported the in vitro antifungal results. In particular, MDG ester 7–12 showed higher binding energy than the antifungal drug, fluconazole. Additionally, these compounds were found to have more promising binding energy with the SARS-CoV-2 main protease (6LU7) than tetracycline, fluconazole, and native inhibitor N3. Detailed investigation of Ki values, absorption, distribution, metabolism, excretion, and toxicity (ADMET), and the drug-likeness profile indicated that most of these compounds satisfy the drug-likeness evaluation, bioavailability, and safety tests, and hence, these synthetic novel MDG esters could be new antifungal and antiviral drugs. 相似文献
13.
14.
15.
Shoaib Khan Shahid Iqbal Mazloom Shah Wajid Rehman Rafaqat Hussain Liaqat Rasheed Hamad Alrbyawi Ayed A. Dera Mohammed Issa Alahmdi Rami Adel Pashameah Eman Alzahrani Abd-ElAziem Farouk 《Molecules (Basel, Switzerland)》2022,27(20)
A unique series of sulphonamide derivatives was attempted to be synthesized in this study using a new and effective method. All of the synthesized compounds were verified using several spectroscopic methods, including FTIR, 1H-NMR, 13C-NMR, and HREI-MS, and their binding interactions were studied using molecular docking. The enzymes urease and α-glucosidase were evaluated against each derivative (1–15). When compared to their respective standard drug such as acarbose and thiourea, almost all compounds were shown to have excellent activity. Among the screened series, analogs 5 (IC50 = 3.20 ± 0.40 and 2.10 ± 0.10 µM) and 6 (IC50 = 2.50 ± 0.40 and 5.30 ± 0.20 µM), emerged as potent molecules when compared to the standard drugs acarbose (IC50 = 8.24 ± 0.08 µM) and urease (IC50 = 7.80 ± 0.30). Moreover, an anti-microbial study also demonstrated that analogs 5 and 6 were found with minimum inhibitory concentrations (MICs) in the presence of standard drugs streptomycin and terinafine. 相似文献
16.
Beiyun Shen Xinchen Shangguan Zhongping Yin Shaofu Wu Qingfeng Zhang Wenwen Peng Jingen Li Lu Zhang Jiguang Chen 《Molecules (Basel, Switzerland)》2021,26(17)
The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM. 相似文献
17.
Petra R. Varga Alexandra Belovics Pter Bagi Szilrd Tth Gergely Szakcs Szilvia Bsze Rita Szab Lszl Drahos Gyrgy Keglevich 《Molecules (Basel, Switzerland)》2022,27(7)
An efficient method applying acyl chlorides as reagents was developed for the acylation of the hindered hydroxy group of dialkyl α-hydroxy-benzylphosphonates. The procedure did not require any catalyst. A few acylations were also performed with the SC-enantiomer of dimethyl α-hydroxy-benzylphosphonate, and the optical purity was retained. A part of the acyloxyphosphonates was tested against eight tumor cell lines of different tissue origin at c = 50 μM concentration. The compounds elicited moderate cytostatic effect against breast, skin, prostate, colon, and lung carcinomas; a melanoma cell line; and against Kaposi’s sarcoma cell lines. Then, dose-dependent cytotoxicity was assayed, and benzoylation of the α-hydroxy group was identified as a moiety that increases anticancer cytotoxicity across all cell lines. Surprisingly, a few analogues were more toxic to multidrug resistant cancer cell lines, thus evading P-glycoprotein mediated drug extrusion. 相似文献
18.
Amal S. Basaleh Fatimah Y. Alomari Abeer A. Sharfalddin Najlaa S. Al-Radadi Doaa Domyati Mostafa A. Hussien 《Molecules (Basel, Switzerland)》2022,27(9)
Vanadium compounds have been set in various fields as anticancer, anti-diabetic, anti-parasitic, anti-viral, and anti-bacterial agents. This study reports the synthesis and structural characterization of oxidovanadium(IV)-based imidazole drug complexes by the elemental analyzer, molar conductance, magnetic moment, spectroscopic techniques, as well as thermal analysis. The obtained geometries were studied theoretically using density functional theory (DFT) under the B3LYP level. The DNA-binding nature of the ligands and their synthesized complexes has been studied by the electronic absorption titrations method. The biological studies were carried with in-vivo assays and the molecular docking method. The EPR spectra asserted the geometry around the vanadium center to be a square pyramid for metal complexes. The geometries have been confirmed using DFT under the B3LYP level. Moreover, the quantum parameters proposed promising bioactivity of the oxidovanadium(IV) complexes. The results of the DNA-binding revealed that the investigated complexes bind to DNA via non-covalent mode, and the intrinsic binding constant (Kb) value for the [VO(SO4)(MNZ)2] H2O complex was promising, which was 2.0 × 106 M−1. Additionally, the cytotoxic activity of the synthesized complexes exhibited good inhibition toward both hepatocellular carcinoma (HepG-2) and human breast cancer (HCF-7) cell lines. The results of molecular docking displayed good correlations with experimental cytotoxicity findings. Therefore, these findings suggest that our synthesized complexes can be introduced as effective anticancer agents. 相似文献
19.
Junwei Zhao Jacopo Carbone Giovanna Farruggia Anna Janecka Luca Gentilucci Natalia Calonghi 《Molecules (Basel, Switzerland)》2023,28(1)
Indoles constitute a large family of heterocyclic compounds widely occurring in nature which are present in a number of bioactive natural and synthetic compounds, including anticancer agents or atypical opioid agonists. As a result, exponential increases in the development of novel methods for the synthesis of indole-containing compounds have been reported in the literature. A series of indole-aryl amide derivatives 1–7 containing tryptamine or an indolylacetic acid nucleus were designed, synthesized, and evaluated as opioid ligands. These new indole derivatives showed negligible to very low affinity for μ- and δ-opioid receptor (OR). On the other hand, compounds 2, 5 and 7 showed Ki values in the low μM range for κ-OR. Since indoles are well known for their anticancer potential, their effect against a panel of tumor cell lines was tested. The target compounds were evaluated for their in vitro cytotoxicity in HT29, HeLa, IGROV-1, MCF7, PC-3, and Jurkat J6 cells. Some of the synthesized compounds showed good activity against the selected tumor cell lines, with the exception of IGROV1. In particular, compound 5 showed a noteworthy selectivity towards HT29 cells, a malignant colonic cell line, without affecting healthy human intestinal cells. Further studies revealed that 5 caused the cell cycle arrest in the G1 phase and promoted apoptosis in HT29 cells. 相似文献
20.
Oyinlola Oluwunmi Olaokun Sizakele Annousca Manonga Muhammad Sulaiman Zubair Saipul Maulana Nqobile Monate Mkolo 《Molecules (Basel, Switzerland)》2022,27(10)
Englerophytum magalismontanum, a medicinal plant with ethnopharmacology use, has a dearth of information regarding its antidiabetic properties. This study evaluated the crude methanol leaf extract of E. magalismontanum and its fractions for total phenolic content, antioxidant activity, and digestive enzymes (α-amylase and α-glucosidase) inhibitory activity using standard methods. The total phenolic content (56.53 ± 1.94 mg GAE/g dry extract) and DPPH Trolox antioxidant equivalent (TAE) (1.51 ± 0.66 µg/mL) of the methanol fraction were the highest among the fractions. The IC50 values of the methanol fraction against α-amylase (10.76 ± 1.33 µg/mL) and α-glucosidase (12.25 ± 1.05 µg/mL) activities were also high. Being the most active, the methanol fraction was subjected to bio-assay guided column chromatography-based enzyme inhibition to obtain a pure compound. The phenolic compound isolated and identified as naringenin inhibited α-amylase and α-glucosidase with IC50 of 5.81 ± 2.14 µg/mL and 4.77 ± 2.99 µg/mL, respectively. This is the first study to isolate naringenin from E. magalismontanum extract. The molecular docking and molecular dynamics studies demonstrated naringenin as a promising lead compound in comparison to acarbose for the treatment of diabetes through the inhibition of α-glucosidase activity. 相似文献