首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Dimethylformamide (DMF) acts as an efficient source of carbon monoxide and dimethylamine in the palladium-catalyzed aminocarbonylation (Heck carbonylation) of p-tolyl bromide to provide the dimethylamide. Addition of amines to the reaction mixture in excess delivers the corresponding aryl amides in good yields. The amines employed, benzylamine, morpholine, and aniline, all constitute good reaction partners. The reaction proceeds smoothly with bromobenzene and more electron-rich aryl bromides, but electron-deficient aryl bromides fail to undergo aminocarbonylation. The reactions are conducted at 180-190 degrees C for 15-20 min with microwave heating in a reaction mixture containing imidazole and potassium tert-butoxide: the latter is required to promote decomposition of the DMF solvent at a suitable rate. The beneficial effects of controlled microwave irradiation as an energy source for the rapid heating of the carbonylation reaction mixture are demonstrated. The carbonylation procedure reported herein, which relies on the in situ generation of carbon monoxide, serves as a convenient alternative to other carbonylation methods and is particularly applicable to small-scale reactions where short reaction times are desired and the direct use of carbon monoxide gas is impractical.  相似文献   

2.
A new technique for the ex situ generation of carbon monoxide (CO) and its efficient incorporation in palladium catalyzed carbonylation reactions was achieved using a simple sealed two-chamber system. The ex situ generation of CO was derived by a palladium catalyzed decarbonylation of tertiary acid chlorides using a catalyst originating from Pd(dba)(2) and P(tBu)(3). Preliminary studies using pivaloyl chloride as the CO-precursor provided an alternative approach for the aminocarbonylation of 2-pyridyl tosylate derivatives using only 1.5 equiv of CO. Further design of the acid chloride CO-precursor led to the development of a new solid, stable, and easy to handle source of CO for chemical transformations. The synthesis of this CO-precursor also provided an entry point for the late installment of an isotopically carbon-labeled acid chloride for the subsequent release of gaseous [(13)C]CO. In combination with studies aimed toward application of CO as the limiting reagent, this method provided highly efficient palladium catalyzed aminocarbonylations with CO-incorporations up to 96%. The ex situ generated CO and the two-chamber system were tested in the synthesis of several compounds of pharmaceutical interest and all of them were labeled as their [(13)C]carbonyl counterparts in good to excellent yields based on limiting CO. Finally, palladium catalyzed decarbonylation at room temperature also allowed for a successful double carbonylation. This new protocol provides a facile and clean source of gaseous CO, which is safely handled and stored. Furthermore, since the CO is generated ex situ, excellent functional group tolerance is secured in the carbonylation chamber. Finally, CO is only generated and released in minute amounts, hence, eliminating the need for specialized equipment such as CO-detectors and equipment for running high pressure reactions.  相似文献   

3.
A palladium-catalyzed highly selective mono or double aminocarbonylation of 1,3-bis(2-iodoaryl)propan-2-amines under balloon pressure of CO has been developed. Tetracyclic isoquinolino[2,3-b]isoquinolinones were obtained through double aminocarbonylation when the reaction was stirred overnight, as most of organic reactions being operated. We accidentally found that monocarbonylated isoquinolinone products could be formed in good selectivity and chemical yield just without stirring the reaction mixture. The low concentration of CO in the still solution may account for the selectivity.  相似文献   

4.
A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac‐Ir(ppy)3‐catalyzed radical aminocarbonylation protocol has been developed. Using a two‐chambered system, alkyl iodides, fac‐Ir(ppy)3, amines, reductants, and CO gas (released ex situ from Mo(CO)6), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields.  相似文献   

5.
An efficient synthesis of N‐phthalimidyl, benzamidyl, acetamidyl, carbamoyl, and ureayl derivatives of dihydropyridines and the application of these reagents as precursors for N‐centered radicals are presented. These aminated dihydropyridines could be used in radical‐transfer hydroamination reactions of various electron‐rich as well as nonactivated olefins in the presence of thiols as polarity‐reversal catalysts. These reactions worked without the aid of any transition metal. Steric and electronic effects exerted by the N‐substitutents of the N‐centered radicals are discussed. In contrast to most metal‐catalyzed processes, the radical hydroamination delivered the opposite regioisomer with excellent anti‐Markovnikov selectivity. Hydroamination products were obtained as protected amines that are readily isolated.  相似文献   

6.
Imidoylation of organotellurium compounds with isonitriles has been investigated in conjunction with the radical-mediated C1 homologation reaction by using CO and isonitriles. Carbon-centered radicals generated photochemically or thermally from organotellurium compounds react with isonitriles in a group-transfer manner to give the corresponding imidoylated products. Organotellurium compounds have been found to serve as effective precursors of a wide variety of stabilized radicals, namely benzyl, alpha-alkoxy, alpha-amino, and acyl radicals, which take part in the imidoylation with high efficiency. The reactions are compatible with various functional groups, and can be carried out in various solvents including environmentally benign water. The reactivity of isonitriles has been compared with that of CO through competition experiments, and the results indicate that isonitriles are superior to CO as radical acceptors in reactions with stabilized radicals. The origin of the differences has been addressed in theoretical studies with density functional theory calculations using the B3LYP hybrid functional. The calculations suggest that both carbonylation and imidoylation proceed with low activation energies, and that there are virtually no differences in the kinetic sense. Instead, it indicates that thermodynamic effects, namely differences in the stability of the acyl and the imidoyl radicals, control the overall course of the reactions.  相似文献   

7.
Primary, secondary, and tertiary alkyl radicals formed by the photocatalyzed oxidation of organosilicates underwent efficient carbonylation with carbon monoxide (CO) to give a variety of unsymmetrical ketones. This study introduces the possibility of radical carbonylation under a photooxidative regime.  相似文献   

8.
Electronic structure methods have been used to study the transition state and products of the reaction between alkyl radicals and CO coordinated in transition-metal complexes. At the B3LYP DFT level, methyl addition to a carbonyl of [Ru(CO)5] or [Ru(CO)3(dmpe)] is calculated to be about 6 kcal/mol more exothermic than addition to free CO. In contrast, methyl addition to [Mo(CO)6] is 12 kcal/mol less exothermic than addition to CO, while the reaction enthalpy of methyl addition to [Pd(CO)4] is comparable to that of free CO. Related results are obtained at the CCSD-T level and for the reactions of the cyclohexyl radical. The transition state for these reactions is characterized by significant distortion of the geometry of the reactant complex, which include lengthening and bending of the M-CO bond, but with negligible C-C bond formation. Accordingly, the activation energy for addition to coordinated carbonyls is 2-10 kcal/mol greater than that of addition to free CO. Additional calculations were also carried out on representative unsaturated metal carbonyls. The calculated results afford an understanding of the mechanism of previously reported photochemical alkane carbonylation systems utilizing d(8)-ML5 metal carbonyls as cocatalysts. In particular, it is strongly indicated that such systems operate via direct attack by an alkyl radical at a CO ligand, a reaction that has not previously been proposed.  相似文献   

9.
We describe transfer carbonylation reactions of 2‐bromoarenes that contain a carbon‐nucleophile using aldehydes as a substitute for CO, leading to the formation of indanone derivatives. The transformation proceeds efficiently under RhI/Pd0‐hybrid catalytic conditions consisting of two discrete transition metals, rhodium and palladium, which catalyze the decarbonylation of aldehydes and the subsequent carbonylation of bromoarenes using the resulting carbonyl moiety, respectively. The majority of the abstracted CO is transferred directly to the product via a CO‐relay process from rhodium to palladium.  相似文献   

10.
Although known since the 1950s, free-radical carbonylation has not received much attention until only recently. In the last few years the application of modern free-radical techniques has revealed the high synthetic potential of this reaction as a tool for introducing CO into organic molecules. Clearly now is the time for a renaissance of this chemistry. Under standard conditions (tributyltin hydride/CO) primary, secondary, as well as tertiary alkyl bromides and iodides can be efficiently converted into the corresponding aldehydes. Aromatic and α,β-unsaturated aldehydes can also be prepared from the parent aromatic and vinylic iodides. If the reaction is carried out in the presence of alkenes containing an electron-withdrawing substituent, the initially formed acyl radical subsequently adds to the alkene, leading to a general method for the synthesis of unsymmetrical ketones. This three-component coupling reaction can be extended successfully to allyltin-mediated reactions. Thus, β,γ-enones can be prepared from organic halides, CO, and allyltributylstannanes. In a remarkable one-pot procedure alkyl halides can be treated with a mixture of alkene, allyltributylstannane, and carbon monoxide in a four-component coupling reaction that provides β-functionalized δ,?-unsaturated ketones by the formation of three new C? C bonds. The reaction of 4-pentenyl radicals with CO leads to acyl radical cyclization, which provides a useful method for the synthesis of cyclopentanones. Certain useful one-electron oxidations can be combined efficiently with free-radical carbonylations. These findings and others discussed in this article clearly demonstrate that free-radical carbonylation can now be considered a practical alternative to transition metal mediated carbonylation.  相似文献   

11.
羰基化反应是指在催化剂存在的条件下,将羰基(C=O)引入到底物分子(如不饱和烃、烷基卤化物、醇、胺等)中的转化过程.羰基化反应是制备羰基化合物的重要途径,能提供高附加值、高纯度的含羰化合物.我们首先综述了羰基化反应的发展历史,随后介绍了氢甲酰化反应、氢羧基化反应、氢酯化反应、胺羰基化反应等几类羰基化反应,尤其重点关注这几类反应区域选择性调控手段.最后对区域选择性羰基化反应未来发展方向和趋势进行了展望.  相似文献   

12.
A fast, mild, and functional group tolerant method for the direct synthesis of benzamides from aryl halides (Br, I) via aminocarbonylation, using solid Co2(CO)8 as a convenient CO source, has been demonstrated. The developed method is applicable to a wide variety of 1° and cyclic and acyclic 2° amines. Nitro substituted (o, m and p) aryl halides have easily been converted to the corresponding benzamides, without the reduction of the nitro group, in high yields using this in situ carbonylation methodology under microwave irradiation.  相似文献   

13.
Reaction of hydroxymethyl radicals with N-methoxy 2,4- and 2,6-dimethylpyridinium salts gave 2,4,6-substituted hydroxymethylpyridines. Similar reactions with 2,3,5,6-tetramethylpyridine and derivatives failed, however 4-substitution could be achieved using a carbamoyl radical.  相似文献   

14.
Palladium‐catalyzed aminocarbonylation of iodobenzene and iodoalkenes (1‐iodocyclohexene, 4‐tert‐butyl‐1‐iodocyclohexene, α‐iodostyrene, 17‐iodoandrost‐16‐ene) was carried out using a free radical (4‐amino‐TEMPO) for the first time. Its reduced form (4‐amino‐2,2,6,6‐tetramethylpiperidine) was also used as N‐nucleophile. The free radical was partially reduced under aminocarbonylation conditions; however, the isolation of carbonylated products bearing a stable radical moiety was successfully accomplished. It was proved that the reduction of the 1‐oxyl functionality took place to higher extent when more severe conditions (40 bar CO pressure) were used. The mixture of carboxamide and 2‐ketocarboxamide products was obtained using iodobenzene because of single and double carbon monoxide insertion, respectively. In turn, carboxamide derivatives were formed exclusively when iodoalkenes were used as substrates.  相似文献   

15.
The atom-transfer carbonylation reaction of various alkyl iodides thereby leading to carboxylic acid esters was effectively accelerated by the addition of transition-metal catalysts under photoirradiation conditions. By using a combined Pd/hν reaction system, vicinal C-functionalization of alkenes was attained in which α-substituted iodoalkanes, alkenes, carbon monoxide, and alcohols were coupled to give functionalized esters. When alkenyl alcohols were used as acceptor alkenes, three-component coupling reactions, which were accompanied by intramolecular esterification, proceeded to give lactones. Pd-dimer complex [Pd(2)(CNMe)(6)][PF(6)](2), which is known to undergo homolysis under photoirradiation conditions, worked quite well as a catalyst in these three- or four-component coupling reactions. In this metal/radical hybrid system, both Pd radicals and acyl radicals are key players and a stereochemical study confirmed the carbonylation step proceeded through a radical carbonylation mechanism.  相似文献   

16.
Herein, we report a one‐electron strategy for catalytic amide synthesis that enables the direct carbamoylation of (hetero)aryl bromides. This radical cross‐coupling approach, which is based on the combination of nickel and photoredox catalysis, proceeds at ambient temperature and uses readily available dihydropyridines as precursors of carbamoyl radicals. The method's mild reaction conditions make it tolerant of sensitive‐functional‐group‐containing substrates and allow the installation of an amide scaffold within biologically relevant heterocycles. In addition, we installed amide functionalities bearing electron‐poor and sterically hindered amine moieties, which would be difficult to prepare with classical dehydrative condensation methods.  相似文献   

17.
Ab initio calculations using the 6-311G**, cc-pVDZ, and (valence) double-zeta pseudopotential (DZP) basis sets, with (MP2, QCISD, CCSD(T)) and without (HF) the inclusion of electron correlation, and density functional (BHandHLYP, B3LYP) calculations predict that the transition states for the reaction of acetyl radical with several alkyl halides adopt an almost collinear arrangement of attacking and leaving radicals at the halogen atom. Energy barriers (DeltaE(double dagger)) for these halogen transfer reactions of between 89.2 (chlorine transfer from methyl group) and 25.3 kJ mol(-1) (iodine transfer from tert-butyl group) are calculated at the BHandHLYP/DZP level of theory. While the difference in forward and reverse energy barriers for iodine transfer to acetyl radical is predicted to be 15.1 kJ mol(-1) for primary alkyl iodide, these values are calculated to be 6.7 and -4.2 kJ mol(-1) for secondary and tertiary alkyl iodide respectively. These data are in good agreement with available experimental data in that atom transfer radical carbonylation reactions are sluggish with primary alkyl iodides, but proceed smoothly with secondary and tertiary alkyl iodides. These calculations also predict that bromine transfer reactions involving acyl radical are also feasible at moderately high temperature.  相似文献   

18.
The atom‐transfer carbonylation reaction of various alkyl iodides thereby leading to carboxylic acid esters was effectively accelerated by the addition of transition‐metal catalysts under photoirradiation conditions. By using a combined Pd/ reaction system, vicinal C‐functionalization of alkenes was attained in which α‐substituted iodoalkanes, alkenes, carbon monoxide, and alcohols were coupled to give functionalized esters. When alkenyl alcohols were used as acceptor alkenes, three‐component coupling reactions, which were accompanied by intramolecular esterification, proceeded to give lactones. Pd‐dimer complex [Pd2(CNMe)6][PF6]2, which is known to undergo homolysis under photoirradiation conditions, worked quite well as a catalyst in these three‐ or four‐component coupling reactions. In this metal/radical hybrid system, both Pd radicals and acyl radicals are key players and a stereochemical study confirmed the carbonylation step proceeded through a radical carbonylation mechanism.  相似文献   

19.
The radical reaction of benzenethiol with S-4-pentynyl carbamothioates provides a valuable protocol for the tin-free generation of carbamoyl radicals, which arise from intramolecular substitution at sulfur by the initial sulfanylvinyl radicals. This procedure can be usefully employed to achieve N-benzylcarbamoyl radical 5-exo and 4-exo cyclizations leading, respectively, to pyrrolidinones and azetidinones, although, for the latter, it seems of lesser utility. Novel evidence is presented that N-tosyl-substituted carbamoyl radicals display a peculiar tendency to yield the corresponding isocyanate by beta-elimination of the tosyl radical.  相似文献   

20.
Tin hydride mediated radical carbonylation and cyclization reaction was investigated using a variety of ω-alkynyl amines as substrates. In this reaction α-methylene and α-stannylmethylene lactams having five to eight membered rings were obtained as principal products. In cases where the nitrogen has a substituent capable of giving stable radicals, such as an α-phenethyl group, the lactam ring formation again took place with extrusion of an α-phenethyl radical. Coupled with the subsequent protodestannylation procedure (TMSCl plus MeOH), these reactions provide a useful entry to α-methylene lactams with incorporation of CO as a lactam carbonyl group. In cases where the amines do not have a substituent acting as a radical leaving group, a reaction course involving a 1,4-H shift is chosen so as to liberate tin radicals ultimately. Thus the proposed mechanism involves (i) nucleophilic attack of amine nitrogen onto a carbonyl group of α,β-unsaturated acyl radicals/α-ketenyl radicals via lone pair-π* interaction, which leads to zwitterionic radical species, (ii) the subsequent proton shift from N to O to give hydroxyallyl radicals, (iii) 1,4-hydrogen shift from O to C, and (iv) β-scission to give lactams with liberation of tin radicals. DFT calculations reveal that the 1,4-hydrogen shifts, the key step of the reaction mechanism, can proceed under usual reaction conditions. On the other hand, an S(H)i type reaction to give lactams may be the result of the β-scission of the similar zwitterionic radical intermediates. DFT calculations also predict that an S(H)i type reaction would result when the intermediate has a good (radical) leaving group such as a phenethyl group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号