首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of soft X-rays in a neutralizer represents an alternative technique that could replace conventional radioactive sources. In this study, we evaluated the charging characteristics of a soft X-ray aerosol neutralizer. In addition, the results from the evaluation of the soft X-ray charger were compared with results obtained using a neutralizer incorporating an 241Am radioactive source. The tandem differential mobility analyzer technique was used previously to determine the size-dependent positive, negative, and neutral charge fractions of a soft X-ray neutralizer. This technique was used to show that the neutral fractions obtained using the soft X-ray charger agreed well with the predictions of bipolar diffusion charging theory, and that the soft X-ray charger could be used as a neutralizer for a scanning mobility particle sizer system.  相似文献   

2.
There have been few investigations of effects of electrical charge, carried by lab-generated particles, on filtration efficiency testing. Here, we measured the elementary charge on particles and the fraction of particles carrying that charge with a combined electrometer, differential mobility analyzer, and scanning mobility particle sizer. A typical solid NaCl aerosol and liquid diethylhexyl sebacate (DEHS) aerosol were generated with Collison and Laskin nebulizers, respectively. Our experimental results showed that NaCl aerosols carried more charge after aerosol generation. The average net elementary charge per particle was approximately 0.07. The NaCl aerosol was overall positively charged but contained a mixture of neutral and charged particles. Individual particles could carry at most four elementary charges. According to constant theorem, we speculated that original NaCl aerosol contained 17% neutral, 45% positive-, and 38% negative-charged particles in the diameter range from 30 to 300 nm. A Kr-85 neutralizer was used to decrease the charge on the NaCl particles. Our results indicated that the DEHS aerosol was electrically neutral. The effects of electric charge on particle collection by electret and electroneutral high efficiency particulate air (HEPA) filters were analyzed. Theoretical calculations suggested that charges on original NaCl aerosol particles enhanced the filtration efficiency of HEPA filters.  相似文献   

3.
Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 June to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies. However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16.9 nm/h. The needed concentration of condensable vapor was 6.1 × 107 cm?3, and its source rate was 1.1 × 106 cm?3 s?1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.  相似文献   

4.
We conducted measurements of black carbon (BC) aerosol in Jiaxing, China during autumn from September 26 to November 30, 2013. We investigated temporal and diurnal variations of BC, and its correlations with meteorological parameters and other major pollutants. Results showed that hourly mass concentrations of BC ranged from 0.2 to 22.0 μg/m3, with an average of 5.1 μg/m3. The diurnal variation of BC exhibited a bimodal distribution, with peaks at 07:00 and 18:00. The morning peak was larger than the evening peak. The mass percentages of BC in PM2.5 and PM10 were 7.1% and 4.8%, respectively. The absorption coefficient of BC was calculated to be 44.4 Mm−1, which accounted for 11.1% of the total aerosol extinction. BC was mainly emitted from local sources in southwestern Jiaxing where BC concentrations were generally greater than 11 μg/m3 during the measurement period. Correlation analysis indicated that the main sources of BC were motor vehicle exhaust, and domestic and industrial combustion.  相似文献   

5.
The current paper presents new operational maps for several different multi-microchannel evaporators, with and without any inlet restrictions (micro-orifices), for the two-phase flow of refrigerants R245fa, R236fa, and R1234ze(E). The test fluids flowed in 67 parallel channels, each having a cross-sectional area of 100 × 100 μm2. In order to emulate the power dissipated by active components in a 3D CMOS CPU chip, two aluminium microheaters were sputtered onto the back-side of the test section providing a 0.5 cm2 each. Without any inlet restrictions in the micro-evaporator, significant parallel channel flow instabilities, vapor back flow, and flow maldistribution led to high-amplitude and high-frequency temperature and pressure oscillations. Such undesired phenomena were then prevented by placing restrictions at the inlet of each channel. High-speed flow visualization distinguished eight different operating regimes of the two-phase flow depending on the tested operating conditions. Therefore, the preferred operating regimes can be easily traced. In particular, flashing two-phase flow without back flow appeared to be the best operating regime without any flow and temperature instabilities.  相似文献   

6.
The contribution of leakage in a baghouse filter (defined as a short circuit between the upstream and downstream sides of the filter) to the emission of fine particles is quantified in comparison to other dust emission sources, and the influence of key operating variables on overall system response is analyzed. The study was conducted on a well-maintained pilot-scale filter unit (9 bags of 500 g/m2 calendered polyester needle felt; total surface area 4.2 m2) operated in Δp-controlled mode over a range of pulsing intensities, with two types of test dust (one free-flowing and the other cohesive) at inlet concentrations of 10 and 30 g/m3. Leaks included single holes between 0.5 and 4 mm diameter, intentionally placed in either the plenum plate or one of the filter bags, as well as seamlines from bag confectioning. Emissions were separated by source into a transient contribution due to dust penetration through the filter bags after each cleaning pulse, and a continuous contribution from leaks. This separation was based on a novel method of data processing that relies on time-resolved concentration measurements with a specially calibrated optical particle counter. Tiny leaks on the order of 1 mm generated the same emission level as all the bags combined, and dominated continuous emissions. The equivalent leak cross section (leakage = media emission) was about 1 ppm of the total installed filter surface, independent of upstream dust concentration. Leakage through open seamlines amounted to 75% of media emissions in case of free-flowing test dust. Leakage was restricted to aerodynamic diameters less than ∼5 μm (roughly the PM2.5 mass fraction). For comparison, time-averaged mass penetration through conventional needle-felt media ranged from about 10−5 to 10−6, depending on cohesiveness of the particle material and pulse cleaning intensity, giving emission levels between about 0.02 and 0.2 mg/m3 at the reference concentration of 10 g/m2.  相似文献   

7.
A field experiment was conducted in Tianjin, China from September 9–30, 2010, focused on the evolution of Planetary Boundary Layer (PBL) and its impact on surface air pollutants. The experiment used three remote sensing instruments, wind profile radar (WPR), microwave radiometer (MWR) and micro-pulse lidar (MPL), to detect the vertical profiles of winds, temperature, and aerosol backscattering coefficient and to measure the vertical profiles of surface pollutants (aerosol, CO, SO2, NOx), and also collected sonic anemometers data from a 255-m meteorological tower. Based on these measurements, the evolution of the PBL was estimated. The averaged PBL height was about 1000–1300 m during noon/afternoon-time, and 200–300 m during night-time. The PBL height and the aerosol concentrations were anti-correlated during clear and haze conditions. The averaged maximum PBL heights were 1.08 and 1.70 km while the averaged aerosol concentrations were 52 and 17 μg/m3 under haze and clear sky conditions, respectively. The influence of aerosols and clouds on solar radiation was observed based on sonic anemometers data collected from the 255-m meteorological tower. The heat flux was found significantly decreased by haze (heavy pollution) or cloud, which tended to depress the development of PBL, while the repressed structure of PBL further weakened the diffusion of pollutants, leading to heavy pollution. This possible positive feedback cycle (more aerosols  lower PBL height  more aerosols) would induce an acceleration process for heavy ground pollution in megacities.  相似文献   

8.
Solar cracking of methane is considered to be an attractive option due to its CO2 free hydrogen production process. Carbon particle deposition on the reactor window, walls and exit is a major obstacle to achieve continuous operation of methane cracking solar reactors. As a solution to this problem a novel “aero-shielded solar cyclone reactor” was created. In this present study the prediction of particle deposition at various locations for the aero-shielded reactor is numerically investigated by a Lagrangian particle dispersion model. A detailed three dimensional computational fluid dynamic (CFD) analysis for carbon deposition at the reactor window, walls and exit is presented using a Discrete Phase Model (DPM). The flow field is based on a RNG k–ε model and species transport with methane as the main flow and argon/ hydrogen as window and wall screening fluid. Flow behavior and particle deposition have been observed with the variation of main flow rates from 10–20 L/min and with carbon particle mass flow rate of 7 × 10−6 and 1.75 × 10−5 kg/s. In this study the window and wall screening flow rates have been considered to be 1 L/min and 10 L/min by employing either argon or hydrogen. Also, to study the effect of particle size simulations have also been carried out (i) with a variation of particle diameter with a size distribution of 0.5–234 μm and (ii) by taking 40 μm mono sized particles which is the mean value for the considered size distribution. Results show that by appropriately selecting the above parameters, the concept of the aero-shielded reactor can be an attractive option to resolve the problem of carbon deposition at the window, walls and exit of the reactor.  相似文献   

9.
Three-dimensional particle tracking velocimetry (3D-PTV) is applied to particle-laden pipe flows at Reynolds number 10,300, based on the bulk velocity and the pipe diameter. The effects of flow direction (upward or downward) and mean concentration (in the range 0.5 × 10−5–3.2 × 10−5) on the production of turbulence are assessed for inertial particles with a Stokes number equal to 2.3, based on the particle relaxation time and viscous scales. The turbulence production and the Kolmogorov constant, both measured for particle laden flows in upflow and downflow, allowed for the derivation of a break-up criterion as a function of the radial coordinate. This criterion predicts the maximum possible particle size before break-up may occur. It is shown that the maximum particle size is bigger at the pipe centerline than in the near-wall zone by more than a factor of 5. Flow direction affects the particle concentration profile, with wall peaking in downflow and core peaking in upflow. This affects both the residence time and the maximum particle size, the latter by 7%.  相似文献   

10.
This paper presents the results of an ongoing investigation into transient pressure pulses using Shannon entropy. Pressure fluctuations (produced by gas–solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle density 1950 kg/m3, loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 μm, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluctuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3–5 m/s) and very high velocities (i.e. 11–14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6–8 m/s).  相似文献   

11.
This paper presents the results of an ongoing investigation into the fluctuations of pressure signals due to solids–gas flows for dense-phase pneumatic conveying of fine powders. Pressure signals were obtained from pressure transducers installed along different locations of a pipeline for the fluidized dense-phase pneumatic conveying of fly ash (median particle diameter 30 μm; particle density 2300 kg/m3; loose-poured bulk density 700 kg/m3) and white powder (median particle diameter 55 μm; particle density 1600 kg/m3; loose-poured bulk density 620 kg/m3) from dilute to fluidized dense-phase. Standard deviation and Shannon entropy were employed to investigate the pressure signal fluctuations. It was found that there is an increase in the values of Shannon entropy and standard deviation for both of the products along the flow direction through the straight pipe sections. However, both the Shannon entropy and standard deviation values tend to decrease after the flow through bend(s). This result could be attributed to the deceleration of particles while flowing through the bends, resulting in dampened particle fluctuation and turbulence. Lower values of Shannon entropy in the early parts of the pipeline could be due to the non-suspension nature of flow (dense-phase), i.e., there is a higher probability that the particles are concentrated toward the bottom of pipe, compared with dilute-phase or suspension flow (high velocity), where the particles could be expected to be distributed homogenously throughout the pipe bore (as the flow is in suspension). Changes in straight-pipe pneumatic conveying characteristics along the flow direction also indicate a change in the flow regime along the flow.  相似文献   

12.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

13.
Year-round measurements of the mass concentration and optical properties of fine aerosols (PM2.5) from June 2009 to May 2010 at an urban site in Beijing were analyzed. The annual mean values of the PM2.5 mass concentration, absorption coefficient (Ab), scattering coefficient (Sc) and single scattering albedo (SSA) at 525 nm were 67 ± 66 μg/m3, 64 ± 62 Mm−1, 360 ± 405 Mm−1 and 0.82 ± 0.09, respectively. The bulk mass absorption efficiency and scattering efficiency of the PM2.5 at 525 nm were 0.78 m2/g and 5.55 m2/g, respectively. The Ab and Sc showed a similar diurnal variation with a maximum at night and a minimum in the afternoon, whereas SSA displayed an opposite diurnal pattern. Significant increases in the Ab and Sc were observed in pollution episodes caused by the accumulation of pollutants from both local and regional sources under unfavorable weather conditions. Aerosol loadings in dust events increased by several times in the spring, which had limited effects on the Ab and Sc due to the low absorption and scattering efficiency of dust particles. The frequency of haze days was the highest in autumn because of the high aerosol absorption and scattering under unfavorable weather conditions. The daily PM2.5 concentration should be controlled to a level lower than 64 μg/m3 to prevent the occurrence of haze days according to its exponentially decreased relationship with visibility.  相似文献   

14.
Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol. The linear statistical regression analysis approach introduced by Fialho et al. (2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients, and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006. Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December, 2006. The absorption exponent of BC absorption coefficient α is estimated as (?0.95 ± 0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient β during the 6 dust storm periods (strong dust storm) is (?2.55 ± 0.009). Decoupling analysis of the measured light absorption coefficients demonstrates that, on average, the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm, floating dust, blowing dust), the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hinterland of desert in spring, dust aerosol is also the major contributor to the total aerosol light absorption, more than that of black carbon aerosol.  相似文献   

15.
The influence of temperature on fluidization was investigated by a statistical chaotic attractor comparison test known as S-statistic. After calibration of the variables used in this method, the S-test was applied to the radioactive particle tracking (RPT) data obtained from a lab-scale fluidized bed. Experiments were performed with sand as fluidized particles and in temperatures from ambient up to 600 °C with superficial gas velocities of 0.29, 0.38 and 0.52 m/s. Considering the behavior of bubbles and comparing with frequency domain analysis, it was concluded that S-statistic is a reliable method for characterization of fluidization process behavior at different temperatures.  相似文献   

16.
The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module. For evaluating the model performance, nitrate ion concentration in precipitation, and mixing ratios of PM10, and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan, Korea, and China, and the satellite retrieved NO2 columns. The comparison shows that the simulated values are generally in good agreement with the observed ones. Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations. The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other. Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25–30% of the total aerosol mass concentration and DRF in Sichuan Basin, Southeast China, and East China where the high mass burden of all major aerosols concentrated. The highest mass concentration and strongest DRF of nitrate could exceed 40 μg/m3 and ?5 W/m2, respectively. It also indicates that other aerosol species, such as carbonaceous and mineral particles, could obviously influence the nitrate DRF for they are often internally mixed with each other.  相似文献   

17.
Flow control using zero-net-mass-flow jets in an S-shaped diffusing duct was investigated. Experiments were conducted in a channel flow facility at a Reynolds number, Re = 4.1 × 104 with particle image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with an high degree of curvature. A stability analysis of the wall normal base flow at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control.  相似文献   

18.
A humidity controlled inlet system was developed to measure the hygroscopic growth of aerosol scattering coefficient in conjunction with nephelometry at an urban site of Chinese Academy of Meteorological Sciences (CAMS) in Beijing and a rural site at Shangdianzi Regional Background Air Pollution Monitoring Station (SDZ) outside Beijing during winter, from December 2005 to January 2006. Measurements were carded out at a wavelength of 525 nm with an Ecotech M9003 nephelometer. The hygroscopic growth function (or factor) of the aerosol scattering coefficientf(RH) increased continuously with increasing relative humidity (RH) and showed no obvious "step-like" deliquescent behavior at both sites during the experiment. The average growth factorf(RH) at the SDZ site could reach 1.5 when RH increased from less than 40% to 92%, and to 2.1 at the CAMS site when RH increased from less than 40% to 93%. The average hygroscopic growth factor at a relative humidity of 80%, f(RH = 80 ± 1%), was found to be about 1.26 ±0.15 at CAMS and 1.24 ±0.11 at SDZ. Further analysis indicated that under relatively polluted conditions, the average hygroscopic growth factor was higher at the CAMS site than that at the SDZ site. However, under relatively clean air conditions, the difference between the two sites was small, showing a hygroscopic growth behavior similar to those of burning biomass or blowing dust. These results reflected the different characteristics of aerosol types at the two sites.  相似文献   

19.
The causes and variability of a heavy haze episode in the Beijing region was analyzed. During the episode, the PM2.5 concentration reached a peak value of 450 μg/kg on January 18, 2013 and rapidly decreased to 100 μg/kg on January 19, 2013, characterizing a large variability in a very short period. This strong variability provides a good opportunity to study the causes of the haze formation. The in situ measurements (including surface meteorological data and vertical structures of the winds, temperature, humidity, and planetary boundary layer (PBL)) together with a chemical/dynamical regional model (WRF-Chem) were used for the analysis. In order to understand the rapid variability of the PM2.5 concentration in the episode, the correlation between the measured meteorological data (including wind speed, PBL height, relative humidity, etc.) and the measured particle concentration (PM2.5 concentration) was studied. In addition, two sensitive model experiments were performed to study the effect of individual contribution from local emissions and regional surrounding emissions to the heavy haze formation. The results suggest that there were two major meteorological factors in controlling the variability of the PM2.5 concentration, namely, surface wind speed and PBL height. During high wind periods, the horizontal transport of aerosol particles played an important role, and the heavy haze was formed when the wind speeds were very weak (less than 1 m/s). Under weak wind conditions, the horizontal transport of aerosol particles was also weak, and the vertical mixing of aerosol particles played an important role. As a result, the PBL height was a major factor in controlling the variability of the PM2.5 concentration. Under the shallow PBL height, aerosol particles were strongly confined near the surface, producing a high surface PM2.5 concentration. The sensitivity model study suggests that the local emissions (emissions from the Beijing region only) were the major cause for the heavy haze events. With only local emissions, the calculated peak value of the PM2.5 concentration was 350 μg/kg, which accounted for 78% of the measured peak value (450 μg/kg). In contrast, without the local emissions, the calculated peak value of the PM2.5 concentration was only 100 μg/kg, which accounted for 22% of the measured peak value.  相似文献   

20.
Black carbon (BC) aerosol mass carried by winds of varying directions from non-local sources was estimated based on hourly measured data of BC mass concentration (CBC) and meteorological parameters from January 2008 to December 2012 in Shanghai, and the relationship between annual average CBC and wind speed was analyzed. The results show that the annual average CBC decreased with wind speed for speeds exceeding 0.3 m/s. The relationship between the two was determined by a linear fit with correlation coefficient 0.88. Assuming BC aerosol mass of non-local sources transported by a southeast wind was zero, annual average BC concentrations (μg/m3) carried by winds of variable direction were 1.99 (southwest), 1.95 (west), 1.15 (northwest), 0.54 (south), 0.39 (north), 0.01 (northeast), and 0.01 (east). BC aerosol mass of non-local sources transported by wind to Shanghai was about 6404.05 t per year, among which the total contribution of southwest, west, and northwest winds was nearly 84%. The aerosol mass transported to Shanghai in winter accounted for 35% that of the entire year, and was greater than that of the other seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号