首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
考虑颗粒转矩的接触网络诱发各向异性分析   总被引:1,自引:1,他引:0  
颗粒材料的宏观力学行为与接触网络的组构各向异性密切相关, 根据接触点的滑动与否、转动与否和强弱力情况, 可以将颗粒间的接触系统分为不同的子接触网络. 一般而言, 不同的子接触网络在颗粒体系中的传力机制不同, 对宏观力学响应的贡献也有不同. 采用离散单元法(discrete element method, DEM)模拟了不同抗转动系数$\mu_r$下颗粒材料三轴剪切试验, 分析了剪切过程中不同子接触网络的组构张量的演变规律, 并探究了颗粒抗转动效应对子接触网络各向异性指标演变规律的影响. 研究发现: 剪切过程中转动、非转动接触的组构张量变化不是独立的, 受到颗粒间滑动与否的影响; 非滑动、强接触网络是颗粒间的主要传力结构, 非滑动接触网络的接触法向和法向接触力各向异性均随$\mu_r$的增大而增大, 其对宏观应力的贡献程度随$\mu_r$的增大而减小;强接触网络的接触法向各向异性随$\mu_r$的增大而增大, 但法向接触力各向异性随$\mu_r$的增大无明显变化, 强接触网络对宏观应力的贡献程度在不同$\mu_r$情况下均相同.   相似文献   

2.
We analyze the rheological response, i.e., fabric and contact force evolution, of dense granular materials from a complex networks perspective. The strain evolution of three classes of subnetworks, i.e., k-cores, minimal cycles and force chain networks, elucidates the breakdown of functional connectivity and structure in the lead up to and during failure. Feature vectors and dynamics occurring in such networks in three different biaxially compressed two-dimensional samples reveal some common aspects which are suggestive of an intrinsic structural hierarchy in granular networks – while differences shed light on the influence of confining pressure and interparticle rolling resistance on the evolution of these networks both at the mesoscopic as well as macroscopic levels.  相似文献   

3.
In this article, the non-isothermal Poiseuille flow and its stability in a vertical annulus filled with porous medium are investigated. The flow is induced by external pressure gradient and buoyancy force due to linearly varying inner wall temperature. The non-Darcy model along with Boussinesq approximation has been used. The Chebyshev spectral-collocation method has been adopted to solve the governing equations related to basic flow as well as its stability. Special attention is given to understand the effect of curvature parameter of the annular geometry on the flow, heat transfer rate and stability of the stably stratified flow. A comprehensive numerical experiment indicates that reducing gap between two concentric cylinders decreases the heat transfer rate as well as the maximum magnitude of the flow velocity. It stabilizes the flow which has been shown through stability analysis. Furthermore, appropriateness of the Forchheimer term in the momentum equation has been examined by investigating the flow regime as well as its stability in the presence and absence of Forchheimer term. Finally, it has been found from the energy analysis at critical point that the thermal-buoyant instability is the only mode of instability for the considered range of different parameters.  相似文献   

4.
In this review, we introduce immersed boundary (IB) methods for fluid-structure interactions (FSIs) of rigid and elastic bodies. IB methods impose momentum forcing on an Eulerian mesh to satisfy boundary conditions on the interface between fluid and structure, which enables us to use a non-body conforming grid system for complex-shaped moving bodies. Imposition of the momentum forcing is performed directly through discrete delta function or indirectly through velocity reconstruction, by which IB methods have their own strengths and weaknesses to FSI problems of rigid and elastic bodies. To deal with FSI, IB methods using monolithic and partitioned (strong and weak coupling) approaches with different stability and cost have been suggested. Nevertheless, two important problems in FSI, cases of low density ratio of solid to fluid and high Reynolds number, have not been completely overcome by current IB methods in terms of the stability, accuracy and cost. These aspects are examined in this review.  相似文献   

5.
In dense two-phase flows, it is well known that phase Doppler anemometry is not well suited for the measurement of concentration and mass flux. Laser diagnostics based on fluorescence can provide the dispersed phase concentration but without discrimination between size classes. We present a new method of coupling the two techniques, in order to extract the local value of concentration and flux per size class. The method is applied to an axisymmetric turbulent jet, laden with polydispersed droplets 1–90 μm. Droplet concentration profiles are obtained in the development zone (x/d 0 < 20) of the dense jet and are used to study droplet dispersion. The results are then introduced into the momentum transport equations to analyze the influence of droplets on the carrier phase. We show that the local decrease of the rate of variation of mean momentum with mass loading is due both to an increase in interfacial transfer rate and to a decrease in turbulent diffusion effects. Received: 20 November 2000 / Accepted: 3 April 2001  相似文献   

6.
One of the great challenges in the science of complex materials – materials capable of emergent behavior such as self-organized pattern formation – is deciphering their “inherent” structural design principles as they deform in response to external loads. We have been exploring the efficacy of techniques from complex networks to the study of dense granular materials as a means to: (i) uncover such design principles and (ii) identify suitable metrics that quantify the evolution of structure during deformation. Herein, we characterize the developing network structure and loss of connectivity in a quasistatically deforming granular medium from the perspective of complex networks. Attention is paid to the evolution of the contact and contact force networks at the local or mesoscopic level, i.e., a particle and its immediate neighbors, as well as the macroscopic level. We explore network motifs and other topological properties at these multiple length scales, in an attempt to find that which best correlates with the constitutive properties of nonaffine deformation and dissipation, spatially and with respect to strain. Key processes or rearrangement events that cause loss of connectivity within the material domain, e.g. microbanding and force chain buckling, are investigated. Network statistics of these processes, previously shown to be major sources of energy dissipation and nonaffine deformation, are then tied to corresponding trends observed in the evolving macroscopic network. It is shown that consideration of the unweighted contact network alone is insufficient to tie dissipation to loss of material connectivity.  相似文献   

7.
为了解决传统扭带存在自转动力矩弱和传热强化幅度低的问题,研究入口反旋斜齿扭带的动力学理论,方法是将总动力矩分解为虚拟的光滑扭带动力矩和虚拟光滑扭带下的螺旋液流对斜齿的冲推力矩之和,运用动量矩定理分析建立了动力矩计算式.以此式指导结构优化和工程应用,使自转动力矩和传热系数均比传统扭带有了成倍提高,设备总阻力仍然在工程许可范围内,成为可以广泛应用于较低流速下自动清洗防垢与高效强化传热的新元件.  相似文献   

8.
The ability to accurately predict droplet entrainment in annular two-phase flow is required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. Most annular flow entrainment models in the open literature are formulated in terms of dimensionless groups, which do not directly account for interfacial instabilities. However, many researchers agree that there is a clear presence of interfacial instability phenomena having a direct impact on droplet entrainment. The present study proposes a model for droplet entrainment, based on the underlying physics of droplet entrainment from upward co-current annular film flow that is characteristic to light water reactor safety analysis. The model is developed based on a force balance and stability analysis that can be implemented into a transient three-field (continuous liquid, droplet, and vapor) two-phase heat transfer and fluid flow systems analysis computer code.  相似文献   

9.
We study the hyperbolic scaling limit for a chain of N coupled anharmonic oscillators. The chain is attached to a point on the left and there is a force (tension) τ acting on the right. In order to provide good ergodic properties to the system, we perturb the Hamiltonian dynamics with random local exchanges of velocities between the particles, so that momentum and energy are locally conserved. We prove that in the macroscopic limit the distributions of the elongation, momentum and energy converge to the solution of the Euler system of equations in the smooth regime.  相似文献   

10.
Velocity profile of fiber suspension flow in a rectangular channel is measured by pulsed ultrasonic Doppler velocimetry (PUDV), and the effect of fiber concentration and Reynolds number on the shape of the velocity profile is investigated. Five types of flow behavior are observed when fiber concentration increases or flow rate decreases progressively. The turbulent velocity profiles of fiber suspension can be described by a correlation with fiber concentration, nl3, and Reynolds number, Re as the main parameters. The presence of fiber in the suspension will reduce the turbulence intensity and thus reduce the turbulent momentum transfer. On the other hand, fibers in the suspension have the tendency to form fiber networks, which will increase the momentum transfer. The relative contribution of these two types of momentum flux will determine the final shape of the velocity profile.  相似文献   

11.
On the modeling of confined buckling of force chains   总被引:3,自引:0,他引:3  
Buckling of force chains, laterally confined by weak network particles, has long been held as the underpinning mechanism for key instabilities arising in dense, cohesionless granular assemblies, e.g. shear banding and slip-stick phenomena. Despite the demonstrated significance of this mechanism from numerous experimental and discrete element studies, there is as yet no model for the confined buckling of force chains. We present herein the first structural mechanical model of this mechanism. Good agreement is found between model predictions and confined force chain buckling events in discrete element simulations. A complete parametric analysis is undertaken to determine the effect of various particle-scale properties on the stability and failure of force chains. Transparency across scales is achieved, as the mechanisms on the microscopic and mesoscopic domains, which drive well-known macroscopic trends in biaxial compression tests, are elucidated.  相似文献   

12.
The emergence of collective decision in swarming systems underscores the central role played by information transmission. Using network-control- and information-theoretic elements applied to a group of topologically interacting agents seeking consensus under switching topologies, the effects of constraints in the information capacity of the communication channel are investigated. This particular system requires us to contend with constantly reconfigurable and spatially embedded interaction networks. We find a sufficient condition on the information data rate guaranteeing the stability of the consensus process in the noiseless case. This result highlights the profound connection with the topological structure of the underlying interaction network, thus having far-reaching implications in the nascent field of swarm robotics. Furthermore, we analyze the more complex case of combined effect of noise and limited data rate. We find that the consensus process is degraded when decreasing the data rate. Moreover, the relationship between critical noise and data rate is found to be in good agreement with information-theoretic predictions. Lastly, we prove that with not-too-large time-delays, our system of topologically interacting agents is stable, provided the underlying interaction network is strongly connected. Using Lyapunov techniques, the maximum allowed time-delay is determined in terms of linear-matrix inequalities.  相似文献   

13.
Transport in Porous Media - We investigate local aspects and heterogeneities of porous medium morphology and relate them to the relevant mechanisms of momentum transfer. In the inertial flow range,...  相似文献   

14.
研究了漂浮基空间机器人捕获非合作航天器过程对系统产生的冲击效应及其后联合体系统镇定运动的控制问题。为此,利用拉格朗日方法及牛顿-欧拉法分别获得了捕获前空间机器人及目标航天器的动力学模型;结合动量守恒定律、系统运动几何关系及力的传递规律,分析了捕获过程相互碰撞所产生的冲击效应,建立了捕获完成后两者联合体的系统动力学模型。在此基础上,针对同时存在不确定参数及外部扰动的联合体系统,设计了基于无源性理论的镇定运动神经网络H_∞鲁棒控制算法。本文提出的基于无源性理论设计的鲁棒控制算法具有良好的动态特性及较强的鲁棒性,可快速完成系统的镇定控制,实现轨迹的精确跟踪。系统数值模拟仿真验证了本文控制方案的正确性。  相似文献   

15.
In this paper we formulate an initial-boundary-value-problem describing the three-dimensional motion of a cantilever in a Magnetic Resonance Force Microscopy setup. The equations of motion are then reduced to a modal dynamical system using a Galerkin ansatz and the respective nonlinear forces are expanded to cubic order. The direct application of the asymptotic multiple scales method to the truncated quadratic modal system near a 2:1 internal resonance revealed conditions for periodic and quasiperiodic energy transfer between the transverse in-plane and out-of-plane modes of the MRFM cantilever. However, several discrepancies are found when comparing the asymptotic results to numerical simulations of the full nonlinear system. Therefore, we employ the reconstitution multiple scales method to a modal system incorporating both quadratic and cubic terms and derive an internal resonance bifurcation structure that includes multiple coexisting in-plane and out-of-plane solutions. This structure is verified and reveals a strong dependency on initial conditions in which orbital instabilities and complex out-of-plane non-stationary motions are found. The latter are investigated via numerical integration of the corresponding slowly-varying evolution equations which reveal that breakdown of quasiperiodic tori is associated with symmetry-breaking and emergence of irregular solutions with a dense spectral content.  相似文献   

16.
防护林带:湍流的数学模型与计算机模拟   总被引:3,自引:0,他引:3  
虽然防护林用于减小风速、控制热量和水汽传递及污染物扩散、 改善气候与环境、增加作物产量等已经有几百年了, 但直到近几十年, 人们才开始系统地研究防护林空气动力学的遮蔽机制.在本综述中,我 们考察了绕防护林带的流动与湍流控制机制,最新的模型与数值模拟 研究情况;通过数值模拟与实验数据的比较,来了解防护林带结构与防 风效果之间的关系;讨论数值分析如何及为什么能够得到所需要的结果. 本文将从多孔隙防护林带流动基本方程组的推导开始,讨论数值模型及 模拟过程,对附体与分离流动进行预测;分析了遮蔽机制与动量交换;对 风向、防护林密度、宽度和三维性对流动与湍流的影响作了系统的论 述.还对热流和土壤水分蒸发的新模型及数值模拟作了简述.最后,我们 对网络工作站、群和高性能分布式并行计算机及其对防护林带模型预 报能力的提高作了讨论.  相似文献   

17.
空间机器人双臂捕获卫星力学分析及镇定控制   总被引:7,自引:0,他引:7  
程靖  陈力 《力学学报》2016,48(4):832-842
随着航天技术的发展,空间机器人要求具有对非合作卫星的在轨捕获能力. 双臂空间机器人与单臂空间机器人相比在这方面显然更具有优势. 然而由于太空环境的复杂性,使得空间机器人双臂捕获非合作卫星操作过程的动力学与控制问题表现出下述特点:非完整动力学约束,动量、动量矩与能量传递变化,捕获前后结构开、闭环变拓扑,与闭环接触几何、运动学约束多者共存. 因此空间机器人双臂捕获卫星技术相关动力学与控制问题变得极其复杂. 为此,讨论了双臂空间机器人捕获自旋卫星过程的动力学演化模拟,以及捕获操作后其不稳定闭链混合体系统的镇定控制问题. 首先,利用拉格朗日第二类方程建立了捕获操作前双臂空间机器人的开环系统动力学模型,利用牛顿-欧拉法建立了目标卫星的系统动力学模型;在此基础上基于动量守恒定律、力的传递规律,经过积分与简化处理分析、求解了双臂空间机器人捕获目标卫星后受到的碰撞冲击效应,给出了合适的捕获操作策略. 根据闭链系统的闭环约束几何及运动学关系获得了闭合链约束方程,推导了捕获操作后闭链混合体系统的动力学方程. 最后基于该动力学方程针对捕获操作结束后失稳的闭链混合体系统,设计了镇定运动模糊H 控制方案. 提出的方案利用模糊逻辑环节克服参数不确定影响,由H 鲁棒控制项消除逼近误差来保证系统控制精度;通过最小权值范数法分配各臂关节力矩,以保证两臂协同操作. 李雅普诺夫稳定性理论证明了系统的全局稳定性. 最后通过数值仿真实验模拟、分析了碰撞冲击响应,并验证了上述镇定运动控制方案的有效性.   相似文献   

18.
The phenomena of droplet entrainment at a quench front is of practical importance as a clear understanding of the underlying mechanisms required to effectively calculate the interfacial mass, momentum, and energy transfer, which characterizes nuclear reactor safety, system design, analysis, and performance. The present study proposes a model for droplet entrainment at a quench front that is based on the best-understood physics related to the Lagrangian quenching phenomenon characteristic to light water reactor (LWR) safety analysis. The model is based on a film boundary layer and stability analysis that attempts to match the characteristic time and length scales of the entrainment phenomenon. This model has been developed such that direct implementation can be made into any two-phase flow simulation code with a three-field (continuous liquid, droplet, and vapor) flow model. Comparisons with integrated transient test data independent of those used for model development have been performed to verify the applicability of the proposed model for the prediction of the entrainment rate of liquid droplets at a quench front under typical reflood conditions envisioned in LWRs.  相似文献   

19.
We explore the regular or chaotic nature of orbits moving in the meridional plane of an axially symmetric galactic gravitational model with a disk, a dense spherical nucleus, and some additional perturbing terms corresponding to influence from nearby galaxies. In order to obtain this, we use the Smaller ALingment Index (SALI) technique integrating extensive samples of orbits. Of particular interest is the study of distant, remote stars moving in large galactocentric orbits. Our extensive numerical experiments indicate that the majority of the distant stars perform chaotic orbits. However, there are also distant stars displaying regular motion as well. Most distant stars are ejected into the galactic halo on approaching the dense and massive nucleus. We study the influence of some important parameters of the dynamical system, such as the mass of the nucleus and the angular momentum, by computing in each case the percentage of regular and chaotic orbits. A second-order polynomial relationship connects the mass of the nucleus and the critical angular momentum of the distant star. Some heuristic semi-theoretical arguments to explain and justify the numerically derived outcomes are also given. Our numerical calculations suggest that the majority of distant stars spend their orbital time in the halo where it is easy to be observed. We present evidence that the main cause for driving stars to distant orbits is the presence of the dense nucleus combined with the perturbation caused by nearby galaxies. The origin of young O and B stars observed in the halo is also discussed.  相似文献   

20.
We examine emergent, self-organized particle cluster conformations in quasistatically deforming dense granular materials from the perspective of structural stability. A structural mechanics approach is employed, first, to devise a new stability measure for such conformations in equilibrium and, second, to use this measure to explore the evolving stability of jammed states of specific cluster conformations, i.e. particles forming force chains and minimal contact cycles. Knowledge gained on (a) the spatial and temporal evolution of stability of individual jammed conformations and (b) their relative stability levels, offer valuable clues on the rheology and, in particular, self-assembly of granular materials. This study is undertaken using data from assemblies of nonuniformly sized circular particles undergoing 2D deformation in two biaxial compression tests: a discrete element simulation of monotonic loading under constant confining pressure, and cyclic loading of a photoelastic disk assembly under constant volume. Our results suggest that the process of self-assembly in these systems is realized at multiple length scales, and that jammed force chains and minimal cycles form the basic building blocks of this process. In particular, 3-cycles are stabilizing agents that act as granular trusses to the load-bearing force chain columns. This co-evolutionary synergy between force chains and 3-cycles proved common to the different materials under different loading conditions. Indeed, the remarkable similarities in the evolution of stability, prevalence and persistence of minimal cycles and force chains in these systems suggest that these structures and their co-evolution together form a generic feature of dense granular systems under quasistatic loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号