首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The entrapment of organic dyes in inorganic solids offers several advantage for solid-state laser applications with respect to the use of liquid or polymer hosts. Among the various inorganic hosts, silica is preferred for its superior mechanical, thermal and optical properties. Organic dyes, such as Rhodamine 6G (Rh6G), can be immobilised in SiO2 both physically (materials of class I), and by covalent bonds (class II materials). In the past years Rh6G-SiO2 class I hybrids were prepared. In this work we propose, for the first time, a Rh6G-SiO2 class II hybrids. We describe the preparation of a suitable sol-gel Rh6G precursor verified by FT-IR analysis and report the characterization of the hybrid materials by means of thermal and porosimetric analysis and optical spectroscopy measurements. The precursor is thermally stable up to ∼250°C, and its optical characteristics (UV-VIS absorbance and photoluminescence, PL) do not change with respect to those of the pristine dye molecule. The PL spectra of the final hybrids show that they are promising candidates for applications in solid state dye lasers.  相似文献   

2.
We have developed a Keggin polyoxometalate (POM)-based ionic-liquid (IL)-immobilizing rhodium single-atom Rh catalyst (MTOA)5[SiW11O39Rh] (MOTA=methyltrioctylammonium cation) that can afford exceptionally high catalytic activity for the hydroformylation of alkenes to produce aldehydes at an ultralow loading of Rh (ca. 3 ppm). For styrene hydroformylation, both the conversion and the yield of the aldehyde can reach almost 99 %, and a TOF as high as 9000 h−1 was obtained without using any phosphine ligand in the reaction process. Further characterization by FTIR, ICP and ESI-MS analysis revealed that the single Rh atom was incorporated in the lacunary POM anions. In particular, the bulky IL cation can play an additional role in stabilizing Rh species and thus prevent aggregation and leaching of Rh species. The IL catalyst was miscible with n-hexane at temperatures; this contributed to exceptionally high activity for hydroformylation even at ultra-low loading of IL catalyst.  相似文献   

3.
Porous liquids (PLs) represent a promising category of sorbents in carbon capture and separation capable of integrating the advantages of flowing liquid and porous solid systems. Well-defined pores were engineered into liquid sorbents via liquifying molecules with stiff interior voids, dissolving rigid porous hosts in flowing liquids, or dispersing porous frameworks in high steric hindrance solvents, producing type I, II, or III PLs, respectively. Unique features of PLs have triggered broad interest in exploring their applications in carbon capture and separation, in which diverse design strategies, synthesis approaches, and enhanced performance have been reported. In this minireview, recent progress in the design, synthesis, and structural engineering of PLs and efforts towards the optimization of their carbon capture and separation behavior will be summarized, including the comparison between PLs with varied types. Porosity engineering into liquid sorbents provides opportunities to resolve challenging issues in conventional sorption and separation systems.  相似文献   

4.
Introduction of porosity into supramolecular gels endows soft materials with functionalities for molecular encapsulation, release, separation and conversion. Metal-organic polyhedra (MOPs), discrete coordination cages containing an internal cavity, have recently been employed as building blocks to construct polymeric gel networks with potential porosity. However, most of the materials can only be synthesized in organic solvents, and the examples of porous, MOP-based hydrogels are scarce. Here, we demonstrate the fabrication of porous hydrogels based on [Rh2(OH-bdc)2]12, a rhodium-based MOP containing hydroxyl groups on its periphery (OH-bdc=5-hydroxy-1,3-benzenedicarboxylate). By simply deprotonating [Rh2(OH-bdc)2]12 with the base NaOH, the supramolecular polymerization between MOPs and organic linkers can be induced in the aqueous solution, leading to the kinetically controllable formation of hydrogels with hierarchical colloidal networks. When heating the deprotonated MOP, Nax[Rh24(O-bdc)x(OH-bdc)24-x], to induce gelation, the MOP was found to partially decompose, affecting the mechanical property of the resulting gels. By applying a post-synthetic deprotonation strategy, we show that the deprotonation degree of the MOP can be altered after the gel formation without serious decomposition of the MOPs. Gas sorption measurements confirmed the permanent porosity of the corresponding aerogels obtained from these MOP-based hydrogels, showing potentials for applications in gas sorption and catalysis.  相似文献   

5.
Phenylacetylenes (PAs) with bulky substituents (adamantyl, tert-butyl, and n-butyl groups) at the para-position polymerized in good yields with Fe, Rh, Mo, and W catalysts. The formed polymers were soluble, and their number-average molecular weights were in the range of thousands to hundred thousands. Whereas it is known that the poly(PA) obtained with the Fe catalyst is an insoluble cis-cisoidal polymer, the present polymers formed with the same catalyst were totally soluble in many solvents such as benzene and CHCl3. The 1H- and 13C-NMR and DSC data revealed that both of the polymers formed with the Fe and Rh catalysts had virtually all-cis structures, while those with the Mo and W catalysts had cis-rich and trans-rich structures, respectively. Cis-cisoidal and cis-transoidal structures of para-substituted poly(PAs) could not be distinguished because of their good solubility. The bulky substituents raised the temperature of cis–trans isomerization and improved the thermal stability of the polymers. Poly(p-t-BuPA) showed gas permeability higher than that of poly(PA). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3157–3163, 1998  相似文献   

6.
Two new one-dimensional metal–organic polymers (MOPs) {[Cu(L)(PPh2Py)·I2]·CH3Cl}n ( I ) and {[Cu(L)(PPh2Py)·Br2]·CH3Cl}n ( II ) (L = (1E,2E)-1,2-bis(pyridine-4-ylmethylene)hydrazine) (4-bpmh)) have been synthesized and elucidated by single crystal X-ray diffraction. The results of X-ray diffraction analysis unambiguously revealed that the two polymers are isostructural with the major intermolecular CH⋯π and π⋯π interactions. Microstructures of these polymers were also synthesized using a sonochemical method in different concentrations and reaction times. Field emission scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis and IR spectroscopy were applied to fully characterize these compounds. The photoluminescent properties of microrod MOPs were also evaluated to add to our understanding of their potential ability for nitro compound sensing. These experiments showed that MOPs I and II are good luminescence sensors for detection of nitro explosives in aqueous media. The probes maintained their high sensitivity and selectivity for 4-nitrophenol (4-NP). The energy transfer process accompanied by electrostatic interactions of 4-NP with these MOPs can be considered as an influential reason for the selectivity of 4-NP. The competitive study of the quenching process has a6lso shown superior operation with microparticles compared with bulky polymers. These results indicate that this method may be useful to synthesize luminescent materials possessing good sensing properties.  相似文献   

7.
Preserving large permanent pore structures in a fluid may endow conventional liquids with emergent physical properties. However, such materials are challenging to make because of the tendency of the pores to be filled and occupied by the solvent molecules. Here, we report the design and synthesis of the first Type III porous liquid (PL) containing uniform yet stable 480 nm cavities. This was achieved by first constructing a single crystalline hollow metal–organic framework (MOF), UiO-66-NH2, through chemical etching. The thin yet defect-free MOF shell effectively excludes the bulky poly(dimethylsiloxane) solvent molecules from entering the cavity through its 4 Å aperture, resulting in the preservation of both micro- and macroporosity in the PL. These enormous void spaces allow the PL to reversibly host and release up to 27 wt % water for up to 10 cycles. The switching between the “dry” state and the “wet” state led to a large changes of the thermal conductivity of the PL from 0.140 to 0.256 W m−1 K−1, affording a guest-responsive liquid thermal switch with a switching ratio of 1.8.  相似文献   

8.
The adsorption dynamics of a series of phospholipids (PLs) at the interface between an aqueous solution or dispersion of the PL and a gas phase containing the nonpolar, nonamphiphilic linear perfluorocarbon perfluorohexane (PFH) was studied by bubble profile analysis tensiometry. The PLs investigated were dioctanoylphosphatidylcholine (DiC8‐PC), dilaurylphosphatidylcholine, dimyristoylphosphatidylcholine, and dipalmitoylphosphatidylcholine. The gas phase consisted of air or air saturated with PFH. The perfluorocarbon gas was found to have an unexpected, strong effect on both the adsorption rate and the equilibrium interfacial tension (γeq) of the PLs. First, for all of the PLs, and at all concentrations investigated, the γeq values were significantly lower (by up to 10 mN m?1) when PFH was present in the gas phase. The efficacy of PFH in decreasing γeq depends on the ability of PLs to form micelles or vesicles in water. For vesicles, it also depends on the gel or fluid state of the membranes. Second, the adsorption rates of all the PLs at the interface (as assessed by the time required for the initial interfacial tension to be reduced by 30 %) are significantly accelerated (by up to fivefold) by the presence of PFH for the lower PL concentrations. Both the surface‐tension reducing effect and the adsorption rate increasing effect establish that PFH has a strong interaction with the PL monolayer and acts as a cosurfactant at the interface, despite the absence of any amphiphilic character. Fitting the adsorption profiles of DiC8‐PC at the PFH‐saturated air/aqueous solution interface with the modified Frumkin model indicated that the PFH molecule lay horizontally at the interface.  相似文献   

9.
Microporous organic polymers (MOP) of a new type have been synthesised in high yields by a simple coordination polymerization of 1,3‐diethynylbenzene, 1,4‐diethynylbenzene and 4,4′‐diethynylbiphenyl catalysed by [Rh(cod)acac] and [Rh(nbd)acac] complexes. The new MOPs are non‐swellable polyacetylene‐type conjugated networks consisting of ethynylaryl‐substituted polyene main chains that are crosslinked by arylene linkers. Prepared MOP samples have a mole fraction of branching units (by 13C CP/MAS NMR) from 0.30 to 0.47 and exhibit the BET (Brunaer‐Emmett‐Teller) surface up to 809 m2 g−1 and hydrogen uptake up to 0.69 wt% (77 K, H2 pressure 750 torr).  相似文献   

10.
Complexes of the type [M(painh)(H2O)2X], where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); X = Cl2 or SO4; painh = p-amino acetophenone isonicotinoyl hydrazone, have been synthesized and characterized by spectral and other physico-chemical techniques. The synthesized complexes are stable powders, insoluble in common organic solvents such as ethanol, benzene, carbon tetrachloride, chloroform and diethyl ether, and are non-electrolytes. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) studies show that the organic ligand decomposes exothermically through various steps. TGA and Infrared (IR) spectral studies indicate the presence of coordinated water in the metal complexes. Magnetic susceptibility measurements and electronic spectra suggest that Mn(II), Co(II), and Ni(II) complexes are paramagnetic with octahedral geometry, whereas Cu(II) complexes have distorted octahedral geometry. The neutral bidentate ligand bonds through >C=O and >C=N–groups in all the complexes. Electron Spin Resonance (ESR) spectra in the solid state show axial symmetry for [Cu(painh)(H2O)2(SO4)] and elongated rhombic symmetry for [Cu(painh)(H2O)2Cl2], suggesting an elongated tetragonally-distorted octahedral structure for both complexes. X-ray powder diffraction parameters for two complexes correspond to tetragonal and orthorhombic crystal lattices. The metal complexes show fair antifungal activity against Rizoctonia sp., Aspergillus sp., Stemphylium sp., and Penicillium sp. and appreciable antibacterial activity against Pseudomonas sp. and Escherichia coli.  相似文献   

11.
The dissociation constants for o-carboxyphenylhydrazoethylacetoacetate (o-CPHEA) ligand, as well as the stability constants for the divalent metal complexes of Cu, (II), Ni (II), Co (II), Zn (II)and Cd (II) ions, have been calculated pH-meterically in different solvents. The dissociation constans pK1=4.10 and pK2=10.55 of the insoluble organic ligand are calculated in aqueous medium. The effect of solvents, the relation between stabilities and both electronegativities and ionization potential are studied.  相似文献   

12.
Complexes of the type [M(pash)Cl] and [M(Hpash)(H2O)SO4] (M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); Hpash = p-amino acetophenone salicyloyl hydrazone) have been synthesized and characterized by elemental analyses, molar electrical conductance, magnetic moments, electronic, ESR and IR spectra, thermal studies and X-ray powder diffraction. All the complexes are insoluble in common organic solvents and are non-electrolytes. The magnetic moment values and electronic spectra indicate a square-planar geometry for Co(II), Ni(II) and Cu(II) chloride complexes and spin-free octahedral geometry for the sulfato complexes. The ligand coordinates through >C=N–,–NH2 and a deprotonated enolate group in all the chloro complexes, and through >C=N–, >C=O and–NH2 in the sulfato complexes. Thermal analyses (TGA and DTA) of [Cu(pash)Cl] show a multi-step exothermic decomposition pattern. ESR spectral parameters of Cu(II) complexes in solid state at room temperature suggest the presence of the unpaired electron in d x 2 ? y 2 . X-ray powder diffraction parameters for [Cu(pash)Cl] and [Ni(Hpash)(H2O)SO4] correspond to tetragonal and orthorhombic crystal lattices, respectively. The complexes show a fair degree of antifungal activity against Aspergillus sp., Stemphylium sp. and Trichoderma sp. and moderate antibacterial activity against E. coli and Clostridium sp.  相似文献   

13.
Organic cages have gained increasing attention in recent years as molecular hosts and porous materials. Among these, barrel-shaped cages or molecular nanobarrels are promising systems to encapsulate large hosts as they possess windows of the same size as their internal cavity. However, these systems have received little attention and remain practically unexplored despite their potential. Herein, we report the design and synthesis of a new trigonal prismatic organic nanobarrel with two large triangular windows with a diameter of 12.7 Å optimal for the encapsulation of C60. Remarkably, this organic nanobarrel shows a high affinity for C60 in solvents in which C60 is virtually insoluble, providing stable solutions of C60.  相似文献   

14.
Defect‐free mixed‐matrix membranes (MMMs) were prepared by incorporating hydrophilic metal‐organic polyhedra (MOPs) into cross‐linked polyethylene oxide (XLPEO) for efficient CO2 separation. Hydrophilic MOPs with triethylene glycol pendant groups, which were assembled by 5‐tri(ethylene glycol) monomethyl ether isophthalic acid and CuII ions, were uniformly dispersed in XLPEO without particle agglomeration. Compared to conventional neat XLPEO, the homogenous dispersion of EG3‐MOPs in XLPEO enhanced CO2 permeability of MMMs. Upon increasing the amount of EG3‐MOPs, the membrane performance such as CO2/N2 selectivity was steadily improved because of unsaturated CuII sites at paddle‐wheel units, which was confirmed by Cu K‐edge XANES and TPD analysis. Therefore, such defect‐free MMMs with unsaturated metal sites would contribute to enhance CO2 separation performance.  相似文献   

15.
A series of cobalt(II), nickel(II) and copper(II) complexes have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and indole-3-aldehyde in ethanol. These complexes have been characterized by elemental analyses, magnetic, spectroscopic (IR, UV-Vis, H-NMR, ESR, FAB-mass), thermal, electrochemical (CV) and solid state d.c. electrical conductivity studies. The elemental analyses confirm 1 : 2 stoichiometry of the type ML2·2H2O (M = Co/Ni) and ML2 (M=Cu). The complexes are colored solids and non-electrolytes in DMF and DMSO. Magnetic and spectral data suggest octahedral geometry for Co(II) and Ni(II) complexes and square-planar geometry for Cu(II) complexes. The presence of coordinated water in Co(II) and Ni(II) complexes was confirmed by thermal and IR data of the complexes. The complexes are insoluble in water and common organic solvents and decompose at higher temperature. All these ligands and their complexes have also been screened for antibacterial (Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger and Aspergillus fumigates) by the cup plate method.  相似文献   

16.
New Pd(II) and Pt(II) 3,6-bis(2′-pyridyl)pyridazine (dppn) mononuclear complexes of the type M(dppn)Cl2 were prepared and characterized. From M(dppn)Cl2, the bimetallic homonuclear complexes M(dppn)MCl4 were prepared by reaction with Pd(PhCN)2Cl2 or K2PtCl4. Bimetallic heteronuclear species of the type M(dppn)M′Cl4, were prepared reacting the mononuclear complexes with the stoichiometric amount of M′Cl2 (M′ = Cu, Co, Ni). All the described reaction give product in high yield. The isolated compounds, almost completely insoluble in most organic solvents, were characterized by elemental analysis, IR, ESR, reflectance spectra, and magnetic moment measurements. On the basis of these data the geometries around the metals are discussed.  相似文献   

17.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

18.
Three novel vic-dioximes: cyclohexylamine-p-tolylglyoxime (L1H2), t-butylamine-p-tolylglyoxime (L2H2) and sec-butylamine-p-tolylglyoxime (L3H2) were prepared by the reaction of anti-p-tolylchloroglyoxime with cyclohexylamine, t-butylamine and sec-butylamine in absolute THF. The detection of H-bonding in all of the Ni(II) complexes by i.r. revealed the square-planar MN4 coordination of mononuclear complexes. MN4 coordination of the [(L1H)2Ni] complex was also determined by 1H and 13C-n.m.r spectroscopy. Mononuclear complexes with a 1:2 metal-ligand ratio were prepared using Ni(II) salts. All Ni(II) complexes are insoluble in common solvents. The ligands and complexes were characterized by elemental analyses, FT-i.r., u.v.–vis., 1H and 13C-n.m.r. spectra, magnetic susceptibility measurements, thermogravimetric analyses (t.g.a.) and cyclic voltammetry.  相似文献   

19.
Abstract

The reaction of antitumor active dirhodium(II) tetraacetate, [Rh2(AcO)4], with S-methyl-L-cysteine (HSMC) was studied at the pH of mixing (=4.8) in aqueous media at various temperatures under aerobic conditions. The results from UV–vis spectroscopy and electrospray ionization mass spectrometry (ESI–MS) showed that HSMC initially coordinates via its sulfur atom to the axial positions of the paddlewheel framework of the dirhodium(II) complex, and was confirmed by the crystal structure of [Rh2(AcO)4(HSMC)2]. After some time (48?h at 25?°C), or at elevated temperature (40?°C), Rh-SMC chelate formation causes breakdown of the paddlewheel structure, generating the mononuclear Rh(III) complexes [Rh(SMC)2]+, [Rh(AcO)(SMC)2] and [Rh(SMC)3], as indicated by ESI–MS. These aerobic reaction products of [Rh2(AcO)4] with HSMC have been compared with those of the two proteinogenic sulfur-containing amino acids methionine and cysteine. Comparison shows that the (S,N)-chelate ring size influences the stability of the [Rh2(AcO)4] paddlewheel cage structure and its RhII–RhII bond, when an amino acid with a thioether group coordinates to dirhodium(II) tetraacetate.  相似文献   

20.
A novel, water‐soluble Rh complex, (nbd)Rh[PPh2(m‐NaOSO2C6H4)] [C(Ph)?CPh2] ( 1 ) was synthesized by the reaction of [(nbd)RhCl]2, Ph2P(m‐NaOSO2C6H4) and Ph2C?C(Ph)Li, whose structure was determined by NMR and IR spectroscopies. The Rh catalyst 1 induced the polymerization of phenylacetylene (PA) in water to give two kinds of polymers; one was soluble in organic solvents such as tetrahydrofuran (THF) and CHCl3, and the other was insoluble in common organic solvents. The polymerization of sodium p‐ethynylbenzoate (p‐NaOCO‐PA) homogeneously proceeded with 1 in water at 60 °C to give the polymer in high yield. Poly(p‐NaOCO‐PA) was treated with 1 N HCl and then reacted with (CH3)3SiCHN2 to obtain poly(p‐MeOCO‐PA). The methyl‐esterified polymer was insoluble in THF and CHCl3, which suggests that the formed poly(p‐MeOCO‐PA) has cis–cisoidal structure. The polymer obtained from the polymerization of [p‐CH3(OCH2CH2)2O2CC6H4]C?CH with 1 in water was soluble in methanol, ethanol, and THF, and partly soluble in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2100–2105, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号