首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用薄膜分散法合成磷脂微囊,根据胶粒的双电层理论,通过在微囊中加入氯化锰、氯化钙和氯化镁电解质溶液,使微囊处于相对稳定的状态.研究发现加入氯化锰和氯化钙溶液,微囊胶体的粒径没有明显的变化,但加入一定浓度氯化镁溶液,其粒径明显变大.为了进一步增加磷脂微囊稳定性,将氯化锰、氯化钙、氯化镁磷脂微囊胶体分别与海藻酸钠(SA)溶液混合.结果表明,氯化镁与SA几乎不能形成水凝胶,氯化钙与SA形成水凝胶能力强于氯化锰.微囊胶体溶液中的磷脂酰丝氨酸(PS)可以与Ca~(2+)和Mg~(2+)键合形成PS-Ca~(2+)和PS-Mg~(2+),但不能与Mn~(2+)键合形成PS-Mn~(2+).对氯化钙磷脂微囊与海藻酸钠合成的复合水凝胶的形貌、溶胀率及细胞毒性进行了表征,结果表明,氯化钙与SA形成的水凝胶可以捕获胶体中磷脂微囊,且形貌规整,结构稳定,无细胞毒性.  相似文献   

2.
Living organisms are capable of dynamically changing their structures for adaptive functions through sophisticated reaction-diffusion processes. Here we show how active supramolecular hydrogels with programmable lifetimes and macroscopic structures can be created by relying on a simple reaction-diffusion strategy. Two hydrogel precursors (poly(acrylic acid) PAA/CaCl2 and Na2CO3) diffuse from different locations and generate amorphous calcium carbonate (ACC) nanoparticles at the diffusional fronts, leading to the formation of hydrogel structures driven by electrostatic interactions between PAA and ACC nanoparticles. Interestingly, the formed hydrogels are capable of autonomously disintegrating over time because of a delayed influx of electrostatic-interaction inhibitors (NaCl). The hydrogel growth process is well explained by a reaction-diffusion model which offers a theoretical means to program the dynamic growth of structured hydrogels. Furthermore, we demonstrate a conceptual access to dynamic information storage in soft materials using the developed reaction-diffusion strategy. This work may serve as a starting point for the development of life-like materials with adaptive structures and functionalities.  相似文献   

3.
Chitosan hydrogels are of considerable interest in synthetic biomimetic mineralisation strategies due to their favourable characteristics such as the presentation of a large surface area for crystal nucleation within a structured yet responsive scaffold. Chitosan hydrogels were prepared and subsequently calcium carbonate mineralisation was initiated using a method which combines alternate soaking of the films with precursor solutions followed by treatment with Kitano solution. This combined approach allows for increased extent of mineralisation, inducement of mineralisation uniformly throughout the hydrogel rather than only at the peripheral surface and ready scalability and shape manipulation. The base synthetic system is readily modified through the introduction of additives that manipulate the nucleation and growth of the calcium carbonate. Addition of poly(acrylic acid) inhibits nucleation and induces tangential crystal growth along the internal and external interfaces of the hydrogel. The resulting composite is comprised of stacked overlapping plates of calcium carbonate intercalated with carbohydrate. The method is applicable in combination with a variety of hydrogels including macroporous chitosan, chitosan-alginate bilayers and pure alginate hydrogels. The composite materials were analysed by SEM, XRD, microRaman spectroscopy and mechanical strength testing.  相似文献   

4.
A family of new uridine phosphocholine amphiphiles that were prepared using a convenient four-step synthetic route is described. Physicochemical studies (differential scanning calorimetry, small-angle X-ray scattering, UV-vis and circular dichroism spectroscopies, light microscopy, transmission electronic microscopy, and scanning electron microscopy) show that these amphiphiles spontaneously assemble into supramolecular structures including vesicles, fibers, hydrogels, and organogels. In aqueous solution, the amphiphiles possessing saturated alkyl chains self-assemble into DNA-like helical fibers in the crystalline state below T(m) and compact bilayers above the melting temperature (T(m)). The transition from bilayers to fibers is thermally reversible. Above a threshold concentration (>6% w/w), a hydrogel is formed due to an entangled network of the fibers. A therapeutic agent such as DNA can be entrapped within the hydrogel structure. In addition to forming bilayer vesicles and hydrogels in aqueous solution, these nucleoside amphiphiles also form organogels in cyclohexane above T(m). Scanning electron microscopy shows a continuous multilamellar phase in the organogels.  相似文献   

5.
Microscale hydrogels of controlled sizes and shapes are useful for cell-based screening, in vitro diagnostics, tissue engineering, and drug delivery. However, the rapid cross-linking of many chemically and pH cross-linkable hydrogel materials prevents the application of existing micromolding techniques. In this work we present a method for fabricating micromolded calcium alginate and chitosan structures through controlled release of the gelling agent from a hydrogel mold. Replica molding was employed to generate patterned membranes, whereas microtransfer molding was used to produce microparticles of controlled shapes. To explore the viability of this technique for producing complex tissue engineering micro-architectures, this approach was used to generate cell-laden size- and shape-controlled 3D microgels as well as composite hydrogels with well-defined spatially segregated regions. In addition, shape-controlled microstructures that can exhibit differential release properties were loaded with macromolecules to verify the potential of this approach for drug delivery applications.  相似文献   

6.
Fandong Meng  Jing Sun  Zhibo Li 《中国化学》2019,37(11):1137-1141
Hydrogels cross‐linked with metal ions (e.g., Ca2+) represent a promising class of bioinspired materials for a wide range of biomedical applications. Herein, we report a facile approach to obtain cross‐linked stimuli‐responsive supramolecular polypeptide hydrogels. The hydrogel is prepared by statistical/block copoly(L‐glutamate)s based copolymers cross‐linked with calcium ions. The incorporation of both oligo(ethylene glycol) (OEG) and glutamic acid residues in the polymer offers thermal‐responsive property and cooperative binding sites with Ca2+ ions simultaneously. We present a systematic study of the influence of calcium ions on the gelation behaviors of these copolymers. It is observed that the addition of calcium ions induces the formation of hydrogels. Increasing the concentration of Ca2+ ions can significantly enhance the gelation ability of the samples as indicated by increased storage modulus and decreased sol‐to‐gel transition temperature (Tsol‐gel). We further demonstrate that the influence of monomer distribution on the gelation behavior is trivial, which is possibly due to similar morphology of the self‐assemblies. The obtained hydrogels exhibit thermal‐responsive gelation behavior mediated by ion cross‐linking, which enables them to be ideal smart hydrogel system for many applications.  相似文献   

7.
There is a growing interest in materials that can dynamically change their properties in the presence of cells to study mechanobiology. Herein, we exploit the 365 nm light mediated [4+4] photodimerization of anthracene groups to develop cytocompatible PEG‐based hydrogels with tailorable initial moduli that can be further stiffened. A hydrogel formulation that can stiffen from 10 to 50 kPa, corresponding to the stiffness of a healthy and fibrotic heart, respectively, was prepared. This system was used to monitor the stiffness‐dependent localization of NFAT, a downstream target of intracellular calcium signaling using a reporter in live cardiac fibroblasts (CFbs). NFAT translocates to the nucleus of CFbs on stiffening hydrogels within 6 h, whereas it remains cytoplasmic when the CFbs are cultured on either 10 or 50 kPa static hydrogels. This finding demonstrates how dynamic changes in the mechanical properties of a material can reveal the kinetics of mechanoresponsive cell signaling pathways that may otherwise be missed in cells cultured on static substrates.  相似文献   

8.
综述了可拉伸超韧水凝胶的设计原理及其在组织工程和柔性电子器件领域的应用.通过将网络结构层次、化学结构、增韧机制与宏观力学性能相结合,重点讨论了单网络水凝胶、双网络水凝胶、纳米复合水凝胶及其它水凝胶等可拉伸超韧水凝胶的研究进展,并总结和展望了新思路和新方向.  相似文献   

9.
水凝胶具有良好的生物相容性和生物可降解性,其结构呈三维网状结构,与细胞外基质相似,在药物释放和组织工程等领域具有广阔的应用前景,被广泛地用于生物制药、生物材料和医学等领域。流变学可以描述材料的流动特性和力学性能,水凝胶的粘弹响应对材料内部结构的变化也非常敏感,因此流变行为被视为研究水凝胶的一种重要方法。本文综述了流变学方法在水凝胶研究中的应用,介绍了水凝胶流变学的研究方法,讨论了影响水凝胶流变学特征的因素,并展望了水凝胶流变学的发展前景。  相似文献   

10.
Osteogenic differentiation and mineralization of bone marrow stromal (BMS) cells depends on the cells' interactions with bioactive peptides associated with the matrix proteins. The RGD peptides of ECM proteins interact with BMS cells through integrin surface receptors to facilitate cell spreading and adhesion. The BMP peptide corresponding to residues 73-92 of bone morphogenetic protein-2 promotes differentiation and mineralization of BMS cells. The objective of this work was to investigate the effects of RGD and BMP peptides, grafted to a hydrogel substrate, on osteogenic differentiation and mineralization of BMS cells. RGD peptide was acrylamide-terminated by reacting acrylic acid with the N-terminal amine group of the peptide to produce the functionalized Ac-GRGD peptide. The PEGylated BMP peptide was reacted with 4-carboxybenzenesulfonazide to produce an azide functionalized Az-mPEG-BMP peptide. Poly (lactide-co-ethylene oxide- co-fumarate) (PLEOF) macromer was cross-linked with Ac-GRGD peptide and propargyl acrylate to produce an RGD conjugated hydrogel. Az-mPEG-BMP peptide was grafted to the hydrogel by "click chemistry". The RGD and BMP peptide density on the hydrogel surface was 1.62+/-0.37 and 5.2+/-0.6 pmol/cm2, respectively. BMS cells were seeded on the hydrogels and the effect of RGD and BMP peptides on osteogenesis was evaluated by measuring ALPase activity and calcium content with incubation time. BMS cells cultured on RGD conjugated, BMP peptide grafted, and RGD+BMP peptide modified hydrogels showed 3, 2.5, and 5-fold increase in ALPase activity after 14 days incubation. BMS cells seeded on RGD+BMP peptides modified hydrogel showed 4.9- and 11.8-fold increase in calcium content after 14 and 21 days, respectively, which was significantly higher than RGD conjugated or BMP grafted hydrogels. These results demonstrate that RGD and BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic differentiation and mineralization of BMS cells. These findings are potentially useful in developing engineered scaffolds for bone regeneration.  相似文献   

11.
A pH and mechano-responsive coordination polymeric gel was developed without the use of long chain hydrophobic groups. The hydrogel was synthesised by reacting the aqueous solution of Mg2+ with the basic aqueous solution of N-(7-hydroxyl-4-methyl-8-coumarinyl)-alanine. The gelation is attributed to the self-aggregation of 1D coordination polymers to form 3D nanostructures through non-covalent interactions to entrap water molecules. The freeze-dried hydrogel exhibits a fibrillar network structure with a uniform ribbon shape. UV/vis absorption studies illustrate that the hydrogel displays a typical pi-pi* transition. The fluorescence intensity of the hydrogel is enhanced drastically with a longer lifetime upon gel formation. Mechanical analysis including dynamic oscillation on shear, steady shear and creep (retardation-relaxation) testing have been performed to elucidate the supramolecular nature of the 3D assembly. Together with the viscoelastic properties and biocompatibility, the Mg2+ hydrogel may find utility as a novel soft material in biomedical applications.  相似文献   

12.
Mechanochromic hydrogels, a new class of stimuli-responsive soft materials, have potential applications in a number of fields such as damage reporting and stress/strain sensing. We prepared a novel mechanochromic hydrogel using a strategy that has been developed to prepare dual-network(DN) hydrogels. A hydrophobic rhodamine derivative(Rh mechanophore) was covalently incorporated into a first network as a cross-linker. This first network embedded with Rh mechanophore within the DN hydrogel was pre-stretched. This guaranteed that the stress could be transferred extensively to the Rh-crosslinked first network once the hydrogel was under an applied force. Interestingly, we found that the threshold stress required to activate the mechanochromism of the hydrogel was less than 200 kPa, and much less than those in previous reports. Moreover, because of the excellent sensitivity of the hydrogel to stress, the DN hydrogel exhibited reversible freezing-induced mechanochromism. Benefiting from the sensitivity of Rh mechanophore to both p H and force, the DN hydrogel showed p H-regulated mechanochromic behavior. Our experimental results indicate that the preparation strategy we used introduces sensitive mechanochromism into the hydrogel and preserves the advantageous mechanical properties of the DN hydrogel. These results will be beneficial to the design and preparation of mechanochromic hydrogels with high stress sensitivity, and foster their practical applications in a number of fields such as damage reporting and stress/strain sensing.  相似文献   

13.
We used atomistic molecular dynamics (MD) simulations to investigate the mechanical and transport properties of the PEO-PAA double network (DN) hydrogel with 76 wt % water content. By analyzing the pair correlation functions for polymer-water pairs and for ion-water pairs and the solvent accessible surface area, we found that the solvation of polymer and ion in the DN hydrogel is enhanced in comparison with both PEO and PAA single network (SN) hydrogels. The effective mesh size of this DN hydrogel is smaller than that of the SN hydrogels with the same water content and the same molecular weight between the cross-linking points (Mc). Applying uniaxial extensions, we obtained the stress-strain curves for the hydrogels. This shows that the DN hydrogel has a sudden increase of stress above approximately 100% strain, much higher than the sum of the stresses of the two SN hydrogels at the same strain. This arises because PEO has a smaller Mc value than PAA, so that the PEO in the DN reaches fully stretched out at 100% strain that corresponds to 260% strain in the PEO SN (beyond this point, the bond stretching and the angle bending increase dramatically). We also calculated the diffusion coefficients of solutes such as D-glucose and ascorbic acid in the hydrogels, where we find that the diffusion coefficients of those solutes in the DN hydrogel are 60% of that in the PEO SN and 40% of that in the PAA SN due to its smaller effective mesh size.  相似文献   

14.
To prepare spherical polymer hydrogels, we used a flow-focusing microfluidic channel device for mixing aqueous solutions of two water-soluble polymers. Continuous encapsulation of cells in the hydrogels was also examined. The polymers were bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer bearing phenyl boronic acid groups (PMBV) and poly(vinyl alcohol) (PVA), which spontaneously form a hydrogel in aqueous medium via specific molecular complexation upon mixing, even when they were in cell culture medium. The microfluidic device was prepared with polydimethylsiloxan, and the surface of the channel was treated with fluoroalkyl compound to prevent sticking of the polymers on the surface. The microfluidic channel process could control the diameter of the spherical hydrogels in the range of 30-90 μm and generated highly monodispersed diameter spherical hydrogels. We found that the polymer distribution in the hydrogel was influenced by the PVA concentration and that the hydrogel could be dissociated by the addition of d-sorbitol to the suspension. The single cells could be encapsulated and remain viable in the hydrogels. The localized distribution of polymers in the hydrogel may provide an environment for modulating cell function. It is concluded that the spontaneous hydrogel formation between PMBV and PVA in the flow-focusing microfluidic channel device is applicable for continuous preparation of a spherical hydrogel-encapsulating living cell.  相似文献   

15.
The ability to create artificial thick tissues is a major tissue engineering problem,requiring the formation of a suitable vascular supply.In this work we examined the ability of inducing angiogenesis in a bioactive hydrogel.GYIGSRG(NH 2-Gly-Tyr-IleGly-Ser-Arg-Gly-COOH,GG) has been conjugated to sodium alginate(ALG) to synthesize a biological active biomaterial ALG-GG.The product was characterized by 1 H NMR,FT-IR and elemental analysis.A series of CaCO 3 /ALG-GG composite hydrogels were prepared by crosslinking ALG-GG with D-glucono-lactone/calcium carbonate(GDL/CaCO 3) in different molar ratios.The mechanical strength and swelling ratio of the composite hydrogels were studied.The results revealed that both of them can be regulated under different preparation conditions.Then,CaCO 3 /ALG-GG composite hydrogel was implanted in vivo to study the ability to induce angiogenesis.The results demonstrated that ALG-GG composited hydrogel can induce angiogenesis significantly compared with non-modified ALG group,and it may be valuable in the development of thick tissue engineering scaffold.  相似文献   

16.
Considering that conventional hydrogels showed limited capabilities of controlling hydrophobic drug loading and releasing and graphene materials had interactions with hydrophobic drugs, we designed a graphene oxide (GO) composite hydrogel for drug delivery. But GO could not disperse well in monomer solution and agglomerated badly. Thus, water-soluble GO (GO-tripolymer) was first prepared under the stabilization of amphiphilic polymer, Pluronic F-127. The GO-tripolymer showed good solubility in PBS with the increase of polymer concentration. All GO-tripolymer solutions had the same UV absorption peaks as GO. Then, GO composite hydrogels (HNG hydrogels) were formed by the polymerization of hydroxyethyl methacrylate (HEMA), N-Vinyl pyrrolidone (NVP) and GO-tripolymer mixture. The introduction of GO-tripolymer had little effect on the gelation time and equilibrium swelling ratio of hydrogel. The freeze-drying hydrogel showed porous structure. The pore size decreased and the rough surface was detected with the increase of GO concentration. HNG hydrogel could load more puerarin and norfloxacin than conventional hydrogel (HN hydrogel). Moreover, HNG hydrogel could control puerarin and norfloxacin release more steadily than HN hydrogel. HNG exhibited low cytotoxicity.  相似文献   

17.
The mild preparation of multifunctional nanocomposite hydrogels is of great importance for practical applications. We report that bioinorganic nanocomposite hydrogels, with calcium niobate nanosheets as cross‐linkers, can be prepared by dual‐enzyme‐triggered polymerization and exfoliation of the layered composite. The layered HRP/calcium niobate composites (HRP=horseradish peroxidase) are formed by the assembly of the calcium niobate nanosheets with HRP. The dual‐enzyme‐triggered polymerization can induce the subsequent exfoliation of the layered composite and final gelation through the interaction between polymer chains and inorganic nanosheets. The self‐immobilized HRP‐GOx enzymes (GOx=glucose oxidase) within the nanocomposite hydrogel retain most of enzymatic activity. Evidently, their thermal stability and reusability can be improved. Notably, our strategy could be easily extended to other inorganic layered materials for the fabrication of other functional nanocomposite hydrogels.  相似文献   

18.
通过分子结构设计, 合成了疏水性单体4-乙酰基丙烯酰乙酸乙酯(AAEA), 并以该单体与丙烯酸(AA)进行自由基溶液共聚, 制备了P(AAEA-co-AA)新型温度敏感性水凝胶. AAEA的1H NMR及FT-IR分析表明, 该单体主要以烯醇式结构存在; P(AAEA-co-AA)的FT-IR分析发现, PAAEA与PAA之间存在较强烈的氢键作用, 使得AAEA烯醇异构体中的C—O伸缩振动吸收峰移向了低波数处. 对冷冻干燥后凝胶的电镜分析发现, 当AAEA用量较高时, 由于凝胶内部分子链段的疏水聚集, 各部分溶胀度以及溶胀速度不均一而使得凝胶表面粗糙不平. 采用DSC对凝胶的体积相转变进行了研究, 结果表明, 该水凝胶的体积相转变温度(VPTT)在48.2至61.8 ℃之间, 并且随着AAEA用量的减小, 凝胶的VPTT逐渐增加. 对该新型温度敏感性水凝胶在去离子水中的溶胀动力学研究发现, 当AAEA用量高于4.6 g时, 凝胶属于Fick凝胶; 反之凝胶则属于非Fick凝胶. 该水凝胶在去离子水中具有良好的温度敏感性, 当外界温度低于VPTT时, 凝胶能保持溶胀状态; 而当外界温度高于VPTT时, 凝胶的平衡溶胀度迅速下降, 表现为温度敏感性. 进一步研究发现, 凝胶组成不仅会影响凝胶的VPTT, 而且会影响凝胶温度敏感性的强弱.  相似文献   

19.
We developed the photo‐crosslinkable hydrogel‐based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo‐crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular‐shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel‐based 3D microfluidic device, showing that 53–75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo‐crosslinkable hydrogel‐based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.  相似文献   

20.
尚婧  陈新  邵正中 《化学进展》2007,19(9):1393-1399
电场敏感水凝胶是一类在电刺激下可以溶胀、收缩或弯曲的智能性水凝胶,其主要特点是可以将电能转化为机械能。本文对近年来已见报道的电场敏感水凝胶的研究进行了较为详细的综述。同时,对电场敏感水凝胶的响应机理、影响水凝胶响应性的因素以及其在能量转换装置、人工肌肉等方面的应用也作了相应的介绍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号