首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heterocyclic diradicaloids with atom-precise control over open-shell nature are promising materials for organic electronics and spintronics. Herein, we disclose quinoidal π-extension of a B/N-heterocycle for generating B/N-type organic diradicaloids. Two quinoidal π-extended B/N-doped polycyclic hydrocarbons that feature fusion of the B/N-heterocycle motif with the antiaromatic s-indacene or dicyclopenta[b,g]naphthalene core were synthesized. This quinoidal π-extension and B/N-heterocycle leads to their open-shell electronic nature, which stands in contrast to the multiple-resonance effect of conventional B/N-type emitters. These B/N-type diradicaloids have modulated (anti)aromaticity and enhanced diradical characters comparing with the all-carbon analogues, as well as intriguing properties, such as magnetic activities, narrow energy gaps and highly red-shifted absorptions. This study thus opens the new space for both of B/N-doped polycyclic π-systems and heterocyclic diradicaloids.  相似文献   

2.
In this work, a facile and versatile strategy for the synthesis of contorted polycyclic aromatic hydrocarbons (PAHs) starting from the functionalized pentacene was established. A series of novel PAHs 1 – 4 and their derivatives were synthesized through a simple two-step synthesis procedure involving an intramolecular reductive Friedel–Crafts cyclization of four newly synthesized pentacene aldehydes 5 – 8 as a key step. All the molecules were confirmed by single-crystal X-ray diffraction and their photophysical and electrochemical properties were studied in detail. Interestingly, the most striking feature of 1 – 4 is their highly contorted carbon structures and the accompanying helical chirality. In particular, the optical resolution of 2 was successfully achieved by chiral-phase HPLC, and the enantiomers were characterized by circular dichroism and circularly polarized luminescence spectroscopy. Despite the highly nonplanar conformations, these contorted PAHs exhibited emissive properties with moderate-to-good fluorescence quantum yields, implying the potential utility of this series PAHs as high-quality organic laser dyes. By using a self-assembly method with the help of epoxy resin, a bottle microlaser based on 3 a was successfully illustrated with a lasing wavelength of 567.8 nm at a threshold of 0.3 mJ/cm2. We believe that this work will shed light on the chemical versatility of pentacene and its derivatives in the construction of novel functionalized PAHs.  相似文献   

3.
《Analytical letters》2012,45(14):3077-3092
ABSTRACT

The application of trap and desorption GC/MS to monitoring of sixteen PAHs in the exhaust emissions from motorcycles was investigated. The time of sampling and analysis for one sample is in 40 minutes. The relative standard deviations were estimated from 20% to 34% for monitoring the total concentrations of PAHs from the emissions of motorcycles. The PAH concentrations appeared to show distinct variations with the stroke, engine size and the aging of motorcycles. The predominate of PAHs in the emissions of motorcycle were naphthalene, fluorene, anthracene, fluoranthene and pyrene. Naphthalene exhibited the highest concentration that was obtained over 79% of the total concentration of sixteen PAHs in the emissions of the over nine years old motorcycles.  相似文献   

4.
A frontier challenge in single-atom (SA) catalysis is the design of fully inorganic sites capable of emulating the high reaction selectivity traditionally exclusive of organometallic counterparts in homogeneous catalysis. Modulating the direct coordination environment in SA sites, via the exploitation of the oxide support's surface chemistry, stands as a powerful albeit underexplored strategy. We report that isolated Rh atoms stabilized on oxygen-defective SnO2 uniquely unite excellent TOF with essentially full selectivity in the gas-phase hydroformylation of ethylene, inhibiting the thermodynamically favored olefin hydrogenation. Density Functional Theory calculations and surface characterization suggest that substantial depletion of the catalyst surface in lattice oxygen, energetically facile on SnO2, is key to unlock a high coordination pliability at the mononuclear Rh centers, leading to an exceptional performance which is on par with that of molecular catalysts in liquid media.  相似文献   

5.
The electrochemical oxidation reaction of nitrogen dioxide (NO2) using boron doped diamond (BDD) electrodes is presented. Cyclic voltammetry of NO2 in a 0.1 M KClO4 solution exhibits oxidation peaks at +1.1 V and +1.5 V (vs. Ag/AgCl) which are attributable to oxidation of HONO and NO2, respectively. Moreover, the pH and scan rate dependences were investigated to study the oxidation mechanism. A linear calibration curve was observed in the concentration range of ∼1 to 5 mM (R2=0.99) with a detection limit of 11.1 ppb (S/B=3) for HONO and 58.6 ppb (S/B=3) for NO2. In addition, the analytical performance was compared with those using glassy carbon, platinum and stainless steel as the working electrode.  相似文献   

6.
High-entropy alloy nanoparticles (HEA NPs) have aroused great interest globally with their unique electrochemical, catalytic, and mechanical properties, as well as diverse activity and multielement tunability for multi-step reactions. Herein, a facile low-temperature synthesis method at atmospheric pressure is employed to synthesize Pd-enriched-HEA-core and Pt-enriched-HEA-shell NPs with a single phase of face-centred cubic structure. Interestingly, the lattice of both Pd-enriched-HEA-core and Pt-enriched-HEA-shell enlarge during the formation process of HEA, with tensile strains included in the core and shell of HEA. The as-obtained PdAgSn/PtBi HEA NPs show excellent electrocatalytic activity and durability for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The specific (mass) activity of PdAgSn/PtBi HEA NPs for MOR is 4.7 mA cm−2 (2874 mA mg(Pd+Pt)−1), about 1.7 (5.9) and 1.5 (4.8) times higher than that of commercial Pd/C and Pt/C catalysts, respectively. Additional to high-entropy effect, Pt sites and Pd sites on the interface of the HEA act synergistically to facilitate the multi-step process towards EOR. This study offers a promising way to find a feasible route for scalable HEA manufacturing with promising applications.  相似文献   

7.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

8.
The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.  相似文献   

9.
应用密度泛函理论研究了纯(8, 0)单壁碳纳米管(SWCNT)和B原子、N原子以及BN原子对掺杂的(8, 0) SWCNTs对硫化氢气体分子的传感性质. 计算结果表明, 与纯碳纳米管相比, B原子掺杂的SWCNT显示了对H2S分子的敏感性, 其几何结构和电子性质在吸附H2S分子后发生了显著变化; 而N原子和BN原子对的掺杂没有改善SWCNT对H2S分子的吸附性能, 因此我们建议B原子掺杂的SWCNT作为检测H2S分子的新型气相传感器.  相似文献   

10.
Two-dimensional (2D) materials possess special physical and chemical properties. They have been proved to have potential application advantage in the microwave absorption (MA) and electromagnetic interference (EMI) shielding. Particularly, they exhibit positive shielding and absorbing response to EMI. Here, the research progress of preparation, electromagnetic performance and microwave shielding/absorbing mechanisms of 2D composite materials are introduced. Effective preparation routes including introducing heteroatoms, constructing unique structures and 2D composite materials are described. Furthermore, the application prospects and challenges for the development of novel EMI materials are expatiated.  相似文献   

11.
以柳树落叶为生物质碳源, 氨水为氮源, 采用溶胶-凝胶法制备了一系列氮掺杂多孔炭材料(WNC), 并对其结构和物理化学性质进行了表征. 结果表明, WNC材料具有较高的比表面积(528~618 m2/g)和多级孔结构; 材料表面含有丰富的含氧和含氮官能团(氮摩尔分数为8.9~9.9%); WNC材料对水体系中的亚甲基蓝(MB)表现出良好的吸附性能, 吸附为自发吸热过程, 符合Langmuir等温吸附和准二级动力学模型, 在pH值为5、 室温下最大吸附量为263.2 mg/g, 且材料可以多次循环使用. 对WNC-2及吸附染料MB后的WNC-2样品进行高温再焙烧处理, 所得样品(WNC-2-R和WNC-2-MB)的ζ电位明显升高, 表面碱性增强, 吸附容量分别提高到之前的1.3倍和1.6倍. 结合各种表征结果, 可以认为WNC材料的高比表面积和多级孔结构有利于吸附质(亚甲基蓝离子)的传输, 并能与材料表面的羰基、 醌基和吡啶氮等基团发生较强的相互作用, 从而使其表现出较高的吸附速率和吸附量.  相似文献   

12.
《Electroanalysis》2018,30(3):551-560
The development of a low‐cost and disposable biosensor platform for the sensitive and rapid detection of microRNAs (miRNAs) is of great interest for healthcare, pharmaceuticals, and medical science. We designed an impedimetric biosensing platform using Chitosan (CHIT)/nitrogen doped reduced graphene oxide (NRGO) conductive composite to modify the surface of pencil graphite electrodes (PGE) for the sensitive detection of miRNAs. An initial optimisation protocol involved investigation of the effect of NRGO concentration and miR 660 DNA probe concentration on the response of the modified electrode. After the optimization protocol, the sequence‐selective hybridization between miR 660 DNA probe and its RNA target was evaluated by measuring changes on charge transfer resistance, Rct values. Moreover, the selectivity of impedimetric biosensor was tested in the presence of non‐complementary miRNA (NC) sequences, such as miR 34a and miR 16. The hybridization process was examined both in phosphate buffer (PBS) and in PBS diluted fetal bovine serum (FBS:PBS) solutions. The biosensor demonstrated a detection limit of 1.72 μg/mL in PBS and 1.65 μg/mL in FBS:PBS diluted solution. Given the easy, quick and disposable attributes, the proposed conductive nanocomposite biosensor platform shows great promise as a low‐cost sensor kit for healthcare monitoring, clinical diagnostics, and biomedical devices.  相似文献   

13.
14.
Sulfide solid electrolytes are promising inorganic solid electrolytes for all-solid-state batteries. Despite their high ionic conductivity and desirable mechanical properties, many known sulfide solid electrolytes exhibit poor air stability. The spontaneous hydrolysis reactions of sulfides with moisture in air lead to the release of toxic hydrogen sulfide and materials degradation, hindering large-scale manufacturing and applications of sulfide-based solid-state batteries. In this work, we systematically investigate the hydrolysis and reduction reactions in Li- and Na-containing sulfides and chlorides by applying thermodynamic analyses based on a first principles computation database. We reveal the stability trends among different chemistries and identify the effect of cations, anions, and Li/Na content on moisture stability. Our results identify promising materials systems to simultaneously achieve desirable moisture stability and electrochemical stability, and provide the design principles for the development of air-stable solid electrolytes.  相似文献   

15.
Multicomponent two-dimensional (2D) transition metal dichalcogenides (TMDCs) semiconductors based on adjustable band gap are increasingly used to design optoelectronic devices with specific spectral response. Here, we have designed the MoxW1-xS2/graphene heterostructure with adjustable band gap by adopting the combination idea of alloying and multiple heterogeneous recombination. The contact type, stability and photoelectric properties of MoxW1-xS2/graphene heterojunction were investigated theoretically. At the same time, by applying external vertical electric field to MoxW1-xS2/graphene, the regulate of heterojunction Schottky contact type was realized. The results show that MoxW1-xS2/graphene heterojunction has broad application prospects in the field of photocatalysis and Schottky devices, and is suitable for being a potential candidate material for next generation of optoelectronic devices. The design of MoxW1-xS2/graphene heterostructure enables it to obtain the advanced characteristics that are lacking in the one-component intrinsic 2D TMDCs semiconductors or graphene materials, and provides a theoretical basis for the experimental preparation of such heterojunctions.  相似文献   

16.
Silicon-based materials that have higher theoretical specific capacity than other conventional anodes, such as carbon materials, Li2TiO3 materials and Sn-based materials, become a hot topic in research of lithium-ion battery (LIB). However, the low conductivity and large volume expansion of silicon-based materials hinders the commercialization of silicon-based materials. Until recent years, these issues are alleviated by the combination of carbon-based materials. In this review, the preparation of Si/C materials by different synthetic methods in the past decade is reviewed along with their respective advantages and disadvantages. In addition, Si/C materials formed by silicon and different carbon-based materials is summarized, where the influences of carbons on the electrochemical performance of silicon are emphasized. Lastly, future research direction in the material design and optimization of Si/C materials is proposed to fill the current gap in the development of efficient Si/C anode for LIBs.  相似文献   

17.
Sulfide solid electrolytes are promising inorganic solid electrolytes for all‐solid‐state batteries. Despite their high ionic conductivity and desirable mechanical properties, many known sulfide solid electrolytes exhibit poor air stability. The spontaneous hydrolysis reactions of sulfides with moisture in air lead to the release of toxic hydrogen sulfide and materials degradation, hindering large‐scale manufacturing and applications of sulfide‐based solid‐state batteries. In this work, we systematically investigate the hydrolysis and reduction reactions in Li‐ and Na‐containing sulfides and chlorides by applying thermodynamic analyses based on a first principles computation database. We reveal the stability trends among different chemistries and identify the effect of cations, anions, and Li/Na content on moisture stability. Our results identify promising materials systems to simultaneously achieve desirable moisture stability and electrochemical stability, and provide the design principles for the development of air‐stable solid electrolytes.  相似文献   

18.
We demonstrate the guiding principles behind simple two dimensional self‐assembly of MOF nanoparticles (NPs) and oleic acid capped iron oxide (Fe3O4) NCs into a uniform two‐dimensional bi‐layered superstructure. This self‐assembly process can be controlled by the energy of ligand–ligand interactions between surface ligands on Fe3O4 NCs and Zr6O4(OH)4(fumarate)6 MOF NPs. Scanning transmission electron microscopy (TEM)/energy‐dispersive X‐ray spectroscopy and TEM tomography confirm the hierarchical co‐assembly of Fe3O4 NCs with MOF NPs as ligand energies are manipulated to promote facile diffusion of the smaller NCs. First‐principles calculations and event‐driven molecular dynamics simulations indicate that the observed patterns are dictated by combination of ligand–surface and ligand–ligand interactions. This study opens a new avenue for design and self‐assembly of MOFs and NCs into high surface area assemblies, mimicking the structure of supported catalyst architectures, and provides a thorough fundamental understanding of the self‐assembly process, which could be a guide for designing functional materials with desired structure.  相似文献   

19.
Layer-structured O3 type cathode materials Na1-xCr1-xTixO2(x=0, 0.03, 0.05) are fabricated by a thermo-polymerization method. The structures and morphologies are characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. It has been found that the appropriate Ti doping effectively leads to the formation of uniform morphology. As a cathode, the x=0.03 sample delivers a quite high discharge capacity of 110 mAh/g at 32 C in the voltage range from 2.0 V to 3.6 V (vs. Na/Na+) and with a capacity retention of 96% after 100 cycles at 0.2 C. The Na//Na0.97Cr0.97Ti0.03O2 cell exhibits very high coulombic e ciency (above 96%). All these results suggest that Na0.97Cr0.97Ti0.03O2 is very promising for high-rate sodium ion batteries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号