首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Structural isomerism allows the correlation between structures and properties to be investigated. Unfortunately, the structural isomers of metal nanoparticles are rare and genuine structural isomerism with distinctly different kernel atom packing (e.g., face‐centered cubic (fcc) vs. non‐fcc) has not been reported until now. Herein we introduce a novel ion‐induction method to synthesize a unique gold nanocluster with a twist mirror symmetry structure. The as‐synthesized nanocluster has the same composition but different kernel atom packing to an existing gold nanocluster Au42(TBBT)26 (TBBT=4‐tert‐butylbenzenethiolate). The fcc‐structured Au42(TBBT)26 nanocluster shows more enhanced photoluminescence than the non‐fcc‐structured Au42(TBBT)26 nanocluster, indicating that the fcc‐structure is more beneficial for emission than the non‐fcc structure. This idea was supported by comparison of the emission intensity of another three pairs of gold nanoclusters with similar compositions and sizes but with different kernel atom packings (fcc vs. non‐fcc).  相似文献   

2.
Small Agn nanoclusters (n<10) have been emerging as promising materials as sensing, biolabeling, and catalysis because of their unique electronic states and optical properties. However, studying synthesis, structure determination, and exploration of their properties remain major challenges as a result of the low stability of small Ag nanoclusters. Herein, we synthesized an atomically precise face‐centered‐cubic‐type small {Ag7}5+ nanocluster supported by a novel triangular hollow polyoxometalate (POM) framework [Si3W27O96]18?. The cluster showed unique {Ag7}5+‐to‐POM charge transfer bands in both visible and UV light regions. Furthermore, this small {Ag7}5+ nanocluster exhibited an unprecedented ultrastability in solution, despite having exposed Ag sites that can be accessed by small molecules, such as O2, water, and solvents.  相似文献   

3.
We report a new strategy in which a thiolate-protected Ag25 nanocluster can be doped with open d-shell group 8 (Ru, Os) and 9 (Ir) metals by forming metal hydride (RuH2, OsH2, IrH) superatoms with a closed d-shell. Structural analyses using various experimental and theoretical methods revealed that the Ag25 nanoclusters were co-doped with the open d-shell metal and hydride species to produce superatom-in-superatom nanoclusters, establishing a novel superatom doping phenomenon for open d-shell metals. The synthesized superatom-in-superatom nanoclusters exhibited dopant-dependent photoluminescence (PL) properties. Comparative PL lifetime studies of the Ag25 nanoclusters doped with 8–10 group metals revealed that both radiative and nonradiative processes were significantly dependent on the dopant. The former is strongly correlated with the electron affinity of the metal dopant, whereas the latter is governed predominantly by the kernel structure changed upon the doping of the metal hydride(s).  相似文献   

4.
Precise atomic structure of metal nanoclusters (NCs) is fundamental for elucidating the structure–property relationships and the inherent size-evolution principles. Reported here is the largest known FCC-based (FCC=face centered cubic) silver nanocluster, [Ag100(SC6H33,4F2)48(PPh3)8]: the first all-octahedral symmetric nesting Ag nanocluster with a four-layered Ag6@Ag38@Ag48S24@Ag8S24P8 structure, consistent symmetry elements, and a unique rhombicuboctahedral morphology distinct from theoretical predictions and previously reported FCC-based Ag clusters. DFT studies revealed extensive interlayer interactions and degenerate frontier orbitals. The FCC-based Russian nesting doll model constitutes a new platform for the study of the size-evolution principles of Ag NCs.  相似文献   

5.
Precise atomic structure of metal nanoclusters (NCs) is fundamental for elucidating the structure–property relationships and the inherent size‐evolution principles. Reported here is the largest known FCC‐based (FCC=face centered cubic) silver nanocluster, [Ag100(SC6H33,4F2)48(PPh3)8]?: the first all‐octahedral symmetric nesting Ag nanocluster with a four‐layered Ag6@Ag38@Ag48S24@Ag8S24P8 structure, consistent symmetry elements, and a unique rhombicuboctahedral morphology distinct from theoretical predictions and previously reported FCC‐based Ag clusters. DFT studies revealed extensive interlayer interactions and degenerate frontier orbitals. The FCC‐based Russian nesting doll model constitutes a new platform for the study of the size‐evolution principles of Ag NCs.  相似文献   

6.
Small Agn nanoclusters (n<10) have been emerging as promising materials as sensing, biolabeling, and catalysis because of their unique electronic states and optical properties. However, studying synthesis, structure determination, and exploration of their properties remain major challenges as a result of the low stability of small Ag nanoclusters. Herein, we synthesized an atomically precise face-centered-cubic-type small {Ag7}5+ nanocluster supported by a novel triangular hollow polyoxometalate (POM) framework [Si3W27O96]18−. The cluster showed unique {Ag7}5+-to-POM charge transfer bands in both visible and UV light regions. Furthermore, this small {Ag7}5+ nanocluster exhibited an unprecedented ultrastability in solution, despite having exposed Ag sites that can be accessed by small molecules, such as O2, water, and solvents.  相似文献   

7.
The controlled synthesis and structure determination of a bimetallic nanocluster Au57Ag53(C≡CPh)40Br12 (Au57Ag53) is presented. The metal core has a four‐shell Au2M3@Au34@Ag51 @Au20 (M=1/3 Au+2/3 Ag) architecture. In contrast to the previously reported large nanoclusters that have highly symmetric kernel structures, the metal atoms in Au57Ag53 are arranged in an irregular manner with C1 symmetry. This cluster exhibits excellent thermal stability and is robust under oxidative or basic conditions. The silver precursors play a key role in dictating the structures of the nanoclusters, which suggests the importance of the counteranions used.  相似文献   

8.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

9.
The properties of metal nanoclusters depend on both their structures and electronic states. However, in contrast to the significant advances achieved in the synthesis of structurally well-defined metal nanoclusters, systematic control of their electronic states is still challenging. In particular, stimuli-responsive and reversible control of the electronic states of metal nanoclusters is attractive from the viewpoint of their practical applications. Recently, we developed a synthesis method for atomically precise Ag nanoclusters using polyoxometalates (POMs) as inorganic ligands. Herein, we exploited the acid/base nature of POMs to reversibly change the electronic states of an atomically precise {Ag27} nanocluster via protonation/deprotonation of the surrounding POM ligands. We succeeded in systematically controlling the electronic states of the {Ag27} nanocluster by adding an acid or a base (0–6 equivalents), which was accompanied by drastic changes in the ultraviolet-visible absorption spectra of the nanocluster solutions. These results demonstrate the great potential of Ag nanoclusters for unprecedented applications in various fields such as sensing, biolabeling, electronics, and catalysis.

The electronic states of Ag nanoclusters were reversibly controlled driven by protonation/deprotonation of polyoxometalate ligands.  相似文献   

10.
The reduction of alkynyl-silver and phosphine-silver precursors with a weak reducing reagent Ph2SiH2 led to the formation of a novel silver nanocluster [Ag93(PPh3)6(C≡CR)50]3+ (R=4-CH3OC6H4), which is the largest structurally characterized cluster of clusters. This disc-shaped cluster has a Ag69 kernel consisting of a bicapped hexagonal prismatic Ag15 unit wrapped by six Ino decahedra through edge-sharing. This is the first time that Ino decahedra are used as a building block to assemble a cluster of clusters. Moreover, the central silver atom has a coordination number of 14, which is the highest in metal nanoclusters. This work provides a diverse metal packing pattern in metal nanoclusters, which is helpful for understanding metal cluster assembling mechanisms.  相似文献   

11.
Metal ions have an important impact on the precise control of the synthesis and atomic structural arrangement of noble metal nanoclusters. In this work, the effect of metal ions on the isomer generation of metal nanoclusters is revealed for the first time. Compared with the previous Ag23 nanoclusters with two face‐centered cubic (fcc) unit cells twisting 27°, the Ag23 isomer had a higher symmetry structure with two fcc unit cells almost overlapping. In addition, the UV/Vis absorption spectrum of the isomer showed a slight redshift of approximately 14 nm. The redshift might be because of the modulation of electronic structure, which is derived from fine‐tuned crystal structure. Based on the experimental results, we provide mechanisms to explain the Cu2+ effect on the structural isomer. This work reports a significant finding to tune precisely the crystal structure and understand the mechanism of shape‐controlled synthesis of metal nanoclusters.  相似文献   

12.
The emergence of thiolated metal nanoclusters provides opportunities to identify significant and unprecedented phenomena because they are at quantum sizes and can be characterized with X‐ray crystallography. Recently silver nanoclusters have received extensive interest owing to their merits, such as low‐cost and rich properties. Herein, a thiolated silver nanocluster [Ag46S7(SPhMe2)24]NO3 (Ag46 for short) with a face‐centered cubic (fcc) structure was successfully synthesized and structurally resolved by X‐ray analysis. Most importantly, interstitial sulfur was found in the lattice void of Ag46 without lattice distortion or expansion, indicating that the classic theory of interstitial metal solid solutions might be not applicable at quantum size. Furthermore, unprecedented chemical bonds and unique structural features (such as asymmetrically coordinated μ4‐S) were found in Ag46 and might be related to the interstitial sulfur, which is supported by natural population analyses.  相似文献   

13.
For the first time, multinuclear noble‐metal clusters have been successfully stabilized by Ti‐oxo clusters. Two unprecedented Ag6@Ti16‐oxo nanoclusters with precise atomic structures were prepared and characterized. The octahedral Ag6 core has strong Ag?Ag bonds (ca. 2.7 Å), and is further stabilized by direct Ag?O?Ti coordination interactions. Moreover, as a result of different acidic/redox conditions in synthesis, the Ag6 core can adopt diverse geometric configurations inside the Ti16‐O shell. Correspondingly, structural differences greatly influence their optical limiting effects. The transmittance reduction activity of the clusters towards 532 nm laser shows a nearly linear concentration dependence, and can be optimized up to about 43 %. This work not only opens a new direction for multimetallic semiconductive nanoclusters with interesting optical properties, but also provides molecular models for important noble‐metal/TiO2 heterogeneous materials.  相似文献   

14.
The binary alloy phase ϵ‐Ag7+xMg26–x with x ≈ 1 and small amounts of the β′‐AgMg phase crystallize by annealing of Ag–Mg alloys with starting compositions between 24–28 At‐% Ag at 390 to 420 °C. A model structure for the ϵ‐phase consisting of a fcc packing of Mackay clusters was derived from the known structure of the ϵ′‐Ag17Mg54 phase. Crystals of the ϵ‐phase were obtained by direct melting of the elements and annealing. The examination of a single crystal yielded a face‐centered cubic unit cell, space group Fm3 with a = 1761.2(5) pm. The refinement was started with the parameters of the model: wR2(all) = 0.0925 for 1093 symmetrically independent reflections. A refinement of the occupancy parameters indicated a partial replacement of silver for magnesium at two metal atom sites, resulting in the final composition ϵ‐Ag7+xMg26–x with x = 0.96(2). There are 264 atoms in the unit cell and the calculated density is 3.568 gcm–3. The topology of the model was confirmed. Mackay icosahedra are located at the lattice points of a face‐centered cubic lattice. Differences between model and refined structure and their effects on the powder patterns are discussed. The new binary structure type of ϵ‐Ag7+xMg26–x can be described in terms of the I3‐cluster concept.  相似文献   

15.
Although face‐centered cubic (fcc), body‐centered cubic (bcc), hexagonal close‐packed (hcp), and other structured gold nanoclusters have been reported, it was unclear whether gold nanoclusters with mix‐packed (fcc and non‐fcc) kernels exist, and the correlation between kernel packing and the properties of gold nanoclusters is unknown. A Au49(2,4‐DMBT)27 nanocluster with a shell electron count of 22 has now been been synthesized and structurally resolved by single‐crystal X‐ray crystallography, which revealed that Au49(2,4‐DMBT)27 contains a unique Au34 kernel consisting of one quasi‐fcc‐structured Au21 and one non‐fcc‐structured Au13 unit (where 2,4‐DMBTH=2,4‐dimethylbenzenethiol). Further experiments revealed that the kernel packing greatly influences the electrochemical gap (EG) and the fcc structure has a larger EG than the investigated non‐fcc structure.  相似文献   

16.
The [AuxAg16-x(SAdm)8(Dppe)2] nanocluster with aggregation-induced emission (AIE) was synthesized from a non-fluorescent [Au9Ag12(SAdm)4(Dppm)6Cl6](SbF6)3 nanocluster via a ligand-exchange engineering (Dppe=1,2-Bis(diphenylphosphino)ethane, Dppm=Bis(diphenylphosphino)methane, HSAdm=1-Adamantanethiol). The nanocluster has a Au-doped icosahedral AuxAg13-x core, capped by two Ag(SR)3, one Ag(SR)2 and two Dppe ligands. By changing the achiral Dppe ligand into a chiral dbpb ligand ((2S,3S)-(-)-Bis(diphenylphosphino)butane or (2R,3R)-(+)-2,3-Bis(diphenylphosphino)butane), chiral nanoclusters are obtained. ESI-MS and UV-vis spectroscopy were performed to track the reaction. This work provides guidance for the construction of new clusters by etching clusters with multidentate phosphine ligands.  相似文献   

17.
Total structure determination of a ligand‐protected gold nanocluster, Au144, has been successfully carried out. The composition of title nanocluster is Au144(C≡CAr)60 ( 1 ; Ar=2‐FC6H4‐). The cluster 1 exhibits a quasi‐spherical Russian doll‐like architecture, comprising a Au54 two‐shelled Mackay icosahedron (Au12@Au42), which is further enclosed by a Au60 anti‐Mackay icosahedral shell. The Au114 kernel is enwrapped by thirty linear ArC≡C‐Au‐C≡CAr staple motifs. The absorption spectrum of 1 shows two bands at 560 and 620 nm. This spectrum is distinctly different from that of thiolated Au144, which was predicted to have an almost identical metal kernel and very similar ligands arrangement in 1 . These facts indicate the molecule‐like behavior of 1 and significant involvement of ligands in the electronic structure of 1 . The cluster 1 is hitherto the largest coinage metal nanocluster with atomically precise molecular structure in the alkynyl family. The work not only addresses the concern of structural information of Au144, which had been long‐pursued, but also provides an interesting example showing ligand effects on the optical properties of ligand protected metal nanoclusters.  相似文献   

18.
High‐level incorporation of Ag in Au nanoclusters (NCs) is conveniently achieved by controlling the concentration of Ag+ in the synthesis of bovine serum albumin (BSA)‐protected Au NCs, and the resulting structure is determined to be bimetallic Ag28Au10‐BSA NCs through a series of characterizations including energy‐dispersive X‐ray spectroscopy, mass spectroscopy, and X‐ray photoelectron spectroscopy, together with density functional theory simulations. Interestingly, the Ag28Au10 NCs exhibit a significant fluorescence redshift rather than quenching upon interaction with hydrogen peroxide, providing a new approach to the detection of hydrogen peroxide through direct comparison of their fluorescence peaks. Furthermore, the Ag28Au10 NCs are also used for the sensitive and selective detection of herbicide through fluorescence enhancement. The detection limit for herbicide (0.1 nm ) is far below the health value established by the U.S. Environmental Protection Agency; such sensitive detection was not achieved by using AuAg NCs with low‐level incorporation of Ag or by using the individual metal NCs.  相似文献   

19.
《中国化学快报》2020,31(10):2871-2875
Metal nanoclusters have shown great potential in photocatalysis, while simultaneous removal of both inorganic and organic contaminants by metal nanoclusters under visible light is less explored. Here, we synthesized Agm(SR)n (SR represents 3-mercaptopropyltriethoxysilane ligand) nanoclusters (∼1 nm) via a reduction of silver triphenylphosphine under ambient conditions in the presence of 3-mercaptopropyltriethoxysilane. The nanocluster was characterized by UV–vis spectroscopy, high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectrum (FTIR), and X-ray photoelectron spectroscopy (XPS). Under 5 W blue LED, the Agm(SR)n/P25 exhibits enhanced catalytic activity for simultaneous methyl orange (MO) oxidation and Cr(VI) reduction, and also for synchronous 4-chlorophenol oxidation and Cr(VI) reduction. Mechanism studies by electrochemical impedance spectroscopy (EIS), photoluminescence (PL), electron spin resonance (ESR) etc. and control experiments reveal that the unique structure of silver nanoclusters with thiolate ligands is vital to the high catalytic performance, and both the photo-generated holes and superoxide radicals are responsible for the decomposition of MO.  相似文献   

20.
Lattice tuning at the ≈1 nm scale is fascinating and challenging; for instance, lattice compression at such a minuscule scale has not been observed. The lattice compression might also bring about some unusual properties, which waits to be verified. Through ligand induction, we herein achieve the lattice compression in a ≈1 nm gold nanocluster for the first time, as detected by the single-crystal X-ray crystallography. In a freshly synthesized Au52(CHT)28 (CHT=S-c−C6H11) nanocluster, the lattice distance of the (110) facet is found to be compressed from 4.51 to 3.58 Å at the near end. However, the lattice distances of the (111) and (100) facets show no change in different positions. The lattice-compressed nanocluster exhibits superior electrocatalytic activity for the CO2 reduction reaction (CO2RR) compared to that exhibited by the same-sized Au52(TBBT)32 (TBBT=4-tert-butyl-benzenethiolate) nanocluster and larger Au nanocrystals without lattice variation, indicating that lattice tuning is an efficient method for tailoring the properties of metal nanoclusters. Further theoretical calculations explain the high CO2RR performance of the lattice-compressed Au52(CHT)28 and provide a correlation between its structure and catalytic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号