首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.  相似文献   

2.
Excessive oxidative stress plays a role in hepatotoxicity and the pathogenesis of hepatic diseases. In our previous study, the phenolic extract of beluga lentil (BLE) showed the most potent in vitro antioxidant activity among extracts of four common varieties of lentils; thus, we hypothesized that BLE might protect liver cells against oxidative stress-induced cytotoxicity. BLE was evaluated for its protective effects against oxidative stress-induced hepatotoxicity in AML12 mouse hepatocytes and BALB/c mice. H2O2 treatment caused a marked decrease in cell viability; however, pretreatment with BLE (25–100 μg/mL) for 24 h significantly preserved the viability of H2O2-treated cells up to about 50% at 100 μg/mL. As expected, BLE dramatically reduced intracellular reactive oxygen species (ROS) levels in a dose-dependent manner in H2O2-treated cells. Further mechanistic studies demonstrated that BLE reduced cellular ROS levels, partly by increasing expression of antioxidant genes. Furthermore, pretreatment with BLE (400 mg/kg) for 2 weeks significantly reduced serum levels of alanine transaminase and triglyceride by about 49% and 40%, respectively, and increased the expression and activity of glutathione peroxidase in CCl4-treated BALB/c mice. These results suggest that BLE protects liver cells against oxidative stress, partly by inducing cellular antioxidant system; thus, it represents a potential source of nutraceuticals with hepatoprotective effects.  相似文献   

3.
Increasing evidence indicates that nobiletin (NOB) is a promising neuroprotective agent. Astrocyte activation plays a key role in neurodegenerative disorders. Thus, this study aims to investigate the effects of NOB on astrocyte activation and the potential mechanisms. In this study, astrocytes were exposed to hypoxia injury for 24 h to induce activation in vitro. Glial fibrillary acidic protein (GFAP) was chosen as a marker of astrocyte activation. To evaluate the effects of NOB on the migration of activated astrocytes, we used a scratch wound healing assay and Transwell migration assay. In addition, the levels of reactive oxygen species (ROS), malondialdehyde (MDA), mitochondrial membrane potential, Nrf2 and HO-1 were measured to investigate the mechanisms of NOB in the activation of astrocytes. We found that NOB alleviated astrocyte activation and decreased GFAP expression during hypoxia. Simultaneously, NOB alleviated the migration of astrocytes induced by hypoxia. With NOB treatment, hypoxia-induced oxidative stress was partially reversed, including reducing the production of ROS and MDA. Furthermore, NOB significantly improved the mitochondrial dysfunction in activated astrocytes. Finally, NOB promoted Nrf2 nuclear translocation and HO-1 expression in response to continuous oxidative damage. Our study indicates, for the first time, that NOB alleviates the activation of astrocytes induced by hypoxia in vitro, in part by ameliorating oxidative stress and mitochondrial dysfunction. This provides new insights into the neuroprotective effects of NOB.  相似文献   

4.
Coptisine is the major bioactive protoberberine alkaloid found in Rhizoma Coptidis. Coptisine reduces inflammatory responses and improves glucose tolerance; nevertheless, whether coptisine has vasoprotective effect in diabetes is not fully characterized. Conduit arteries including aortas and carotid arteries were obtained from male C57BL/6J mice for ex vivo treatment with risk factors (high glucose or tunicamycin) and coptisine. Some arterial rings were obtained from diabetic mice, which were induced by high-fat diet (45% kcal% fat) feeding for 6 weeks combined with a low-dose intraperitoneal injection of streptozotocin (120 mg/kg). Functional studies showed that coptisine protected endothelium-dependent relaxation in aortas against risk factors and from diabetic mice. Coptisine increased phosphorylations of AMPK and eNOS and downregulated the endoplasmic reticulum (ER) stress markers as determined by Western blotting. Coptisine elevates NO bioavailability and decreases reactive oxygen species level. The results indicate that coptisine improves vascular function in diabetes through suppression of ER stress and oxidative stress, implying the therapeutic potential of coptisine to treat diabetic vasculopathy.  相似文献   

5.
Esculetin is a coumarin-derived compound with antioxidant and anti-inflammatory properties. The current study aims to evaluate the therapeutic implications of esculetin on retinal dysfunction and uncover the underlying mechanisms. Tert-butyl hydroperoxide (t-BHP) at a concentration of 300 μM was used to induce oxidative stress in human retinal pigment epithelial cell line (ARPE-19) cells. Esculetin at concentrations below 250 μM did not cause cytotoxicity to ARPE-19 cells. Cell viability analysis confirmed that t-BHP induced oxidative injury of ARPE-19 cells. However, ARPE-19 cells were protected from t-BHP-induced oxidative injury by esculetin in a concentration-dependent manner. As a result of the TUNEL assay to confirm apoptosis, esculetin treatment reduced the number of TUNEL-positive cells. Esculetin down-regulated the expression levels of Bax, Caspase-3, and PARP and up-regulated the expression level of Bcl2. Collectively, this study demonstrates that esculetin exerts potent antioxidant properties in ARPE-19 cells, inhibiting t-BHP-induced apoptosis under the regulation of apoptotic factors.  相似文献   

6.
Electroporation, applied as a non-thermal ablation method has proven to be effective for focal prostate treatment. In this study, we performed pre-clinical research, which aims at exploring the specific impact of this so-called calcium electroporation on prostate cancer. First, in an in-vitro study of DU 145 cell lines, microsecond electroporation (μsEP) parameters were optimized. We determined hence the voltage that provides both high permeability and viability of these prostate cancer cells. Subsequently, we compared the effect of μsEP on cells’ viability with and without calcium administration. For high-voltage pulses, the cell death’s mechanism was evaluated using flow-cytometry and confocal laser microscopy. For lower-voltage pulses, the influence of electroporation on prostate cancer cell mobility was studied using scratch assays. Additionally, we applied calcium-binding fluorescence dye (Fluo-8) to observe the calcium uptake dynamic with the fluorescence microscopy. Moreover, the molecular dynamics simulation visualized the process of calcium ions inflow during μsEP. According to our results calcium electroporation significantly decreases the cells viability by promoting apoptosis. Furthermore, our data shows that the application of pulsed electric fields disassembles the actin cytoskeleton and influences the prostate cancer cells’ mobility.  相似文献   

7.
The principal goal of the study was to verify the concept of pharmacological induction of Foxp3+CD25+CD4+ T regulatory (Treg) cells which will additionally be characterized by a highly suppressive phenotype, i.e., by extensive CD25 and CD39 expression and IL-10 and TGF-β production. Stimulated and unstimulated murine lymphocytes were exposed to IL-27, teriflunomide (TER), and all trans retinoic acid (ATRA) alone and to their combinations. The study demonstrated that: (a) IL-27 alone induced CD39 expression on Treg cells and the generation of Tr1 cells; (b) TER alone induced Foxp3-expressing CD4+ T cells and up-regulated density of CD25 on these cells; TER also induced the ability of Treg cells to TGF-β production; (c) ATRA alone induced CD39 expression on Treg cells. The experiments revealed a strong superadditive effect between IL-27 and ATRA with respect to increasing CD39 expression on Treg cells. Moreover, IL-27 and ATRA in combination, but not alone, induced the ability of Treg cells to IL-10 production. However, the combination of IL-27, TER, and ATRA did not induce the generation of Treg cell subset with all described above features. This was due to the fact that TER abolished all listed above desired effects induced by IL-27 alone, ATRA alone, and their combination. IL-27 alone, ATRA alone, and their combination affected TER-induced effects to a lesser extent. Therefore, it can be concluded that in the aspect of pharmacological induction of Treg cells with a highly suppressive phenotype, the triple combination treatment with TER, IL-27, and ATRA does not provide any benefits over TER alone or dual combination including IL-27 and ATRA.  相似文献   

8.
(1) Background: the current research was conducted to investigate the potential non-antioxidant roles of vitamin E in the protection of hepatocysts from oxidative damage. (2) Methods: primary sheep hepatocytes were cultured and exposed to 200, 400, 600, or 800 μmol/L hydrogen peroxide, while their viability was assessed using a CCK-8 kit. Then, cells were treated with 400 μmol/L hydrogen peroxide following a pretreatment with 50, 100, 200, 400, and 800 μmol/L vitamin E and their intracellular ROS levels were determined by means of the DCF-DA assay. RNA-seq, verified by qRT-PCR, was conducted thereafter: non-treated control (C1); cells treated with 400 μmol/L hydrogen peroxide (C2); and C2 plus a pretreatment with 100 μmol/L vitamin E (T1). (3) Results: the 200–800 μmol/L hydrogen peroxide caused significant cell death, while 50, 100, and 200 μmol/L vitamin E pretreatment significantly improved the survival rate of hepatocytes. ROS content in the cells pretreated with vitamin E was significantly lower than that in the control group and hydrogen-peroxide-treated group, especially in those pretreated with 100 μmol/L vitamin E. The differentially expressed genes (DEGs) concerning cell death involved in apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2), pyroptosis (NLRP3, IL-1β, and IRAK2), and ferroptosis (TFRC and PTGS2). The abundances of IL-1β, IRAK2, NLRP3, CASP8, CASP8AP2, RIPK1, and TLR7 were significantly increased in the C1 group and decreased in T1 group, while TFRC and PTGS2 were increased in T1 group. (4) Conclusions: oxidative stress induced by hydrogen peroxide caused cellular damage and death in sheep hepatocytes. Pretreatment with vitamin E effectively reduced intracellular ROS levels and protected the hepatocytes from cell death by regulating gene expression associated with apoptosis (RIPK1, TLR7, CASP8, and CASP8AP2) and pyroptosis (NLRP3, IL-1β, and IRAK2), but not ferroptosis (TFRC and PTGS2).  相似文献   

9.
Epilobium angustifolium L. is a popular medicinal plant found in many regions of the world. This plant contains small amounts of essential oil whose composition and properties have not been extensively investigated. There are few reports in the literature on the antioxidant and antifungal properties of this essential oil and the possibility of applying it as a potential promoter of the skin penetration of drugs. The essential oil was obtained by distillation using a Clavenger type apparatus. The chemical composition was analyzed by the GC-MS method. The major active compounds of E. angustifolium L. essential oil (EOEa) were terpenes, including α-caryophyllene oxide, eucalyptol, β-linalool, camphor, (S)-carvone, and β-caryophyllene. The analyzed essential oil was also characterized by antioxidant activity amounting to 78% RSA (Radical Scavenging Activity). Antifungal activity against the strains Aspergillus niger, A. ochraceus, A. parasiticum, and Penicillium cyclopium was also determined. The largest inhibition zone was observed for strains from the Aspergillus group. The EOEa enhanced the percutaneous penetration of ibuprofen and lidocaine. After a 24 h test, the content of terpene in the skin and the acceptor fluid was examined. It has been shown that the main compounds contained in the essential oil do not penetrate through the skin, but accumulate in it. Additionally, FTIR-ATR analysis showed a disturbance of the stratum corneum (SC) lipids caused by the essential oil application. Due to its rich composition and high biological activity, EOEa may be a potential candidate to be applied, for example, in the pharmaceutical or cosmetic industries. Moreover, due to the reaction of the essential oil components with SC lipids, the EOEa could be an effective permeation enhancer of topically applied hydrophilic and lipophilic drugs.  相似文献   

10.
在透氧膜反应器中进行甲烷氧化偶联反应的研究   总被引:2,自引:0,他引:2  
 混合导体透氧膜是一类同时具有电子和氧离子两类导电性的陶瓷膜.在高温下,氧会以氧离子的形式透过透氧膜,因此在膜表面存在丰富的氧物种(O-,O-2,O2-2和O2-),这些氧物种能够提高甲烷氧化偶联(OCM)反应的C2选择性.采用挤压的方法制备出致密的Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO)透氧膜管,并考察了此透氧膜管对OCM反应的催化性能.发现BSCFO的C2生成速率比La0.6Sr0.4Co0.8Fe0.2O3-δ(LSCFO)和La-Ba-Co-Fe-O(LBCFO)要高得多,其原因主要是由于BSCFO中的氧空缺浓度比较高.高的氧空缺浓度不仅能够加速氧离子的传输,而且能够提高甲烷分子的活化速度,所以BSCFO具有比LSCFO和LBCFO更好的催化性能.C2生成速率随着反应温度及原料气中甲烷浓度的升高而升高,C2选择性取决于氧离子结合与OCM反应竞争的结果,高的氧离子结合速率会降低C2选择性.甲烷转化率随着富氧侧氧分压的升高而升高,但C2选择性则随着氧分压的升高而降低.这说\r\n明在OCM过程中气相反应起着重要的作用.  相似文献   

11.
To further understand the toxic effects of bisphenol Z (BPZ) and bisphenol C (BPC) on aquatic organisms, zebrafish (Danio rerio) were exposed to 0.02 mg/L BPZ and BPC mixed solution in the laboratory for 28 days. The impacts of BPZ and BPC on the activity of the antioxidant enzymes, expression of antioxidant genes, and estrogen receptor genes in zebrafish under different pH conditions were studied. The changes of glutathione peroxidase (GSH-Px), reduced glutathione (GSH), total superoxide dismutase (T-SOD), catalase (POD), and malondialdehyde (MDA) in the zebrafish were detected by spectrophotometry. The mRNA relative expression levels of CAT, GSH, SOD, ERa, and ERb1 in the experimental group were determined by fluorescence quantitative PCR. The results showed that SOD activity and MDA content were inhibited under different pH conditions, and the activities of GSH, GSH-Px, and POD were induced. The activities of POD and GSH induced in the neutral environment were stronger than those in an acidic and alkaline environment. The mRNA relative expression levels of SOD and GSH were consistent with the activities of SOD and GSH. The mRNA relative expression levels of CAT were induced more strongly in the neutral environment than in acidic and alkaline conditions, the mRNA relative expression levels of ERa were induced most weakly in a neutral environment, and the mRNA relative expression levels of ERb1 were inhibited the most in a neutral environment.  相似文献   

12.
Combination therapy is based on the beneficial effects of pharmacodynamic interaction (synergistic or additive) between combined drugs or substances. A considerable group of candidates for combined treatments are natural compounds (e.g., isothiocyanates) and their analogs, which are tested in combination with anticancer drugs. We tested the anticancer effect of the combined treatment of isothiocyanate 2-oxohexyl isothiocyanate and 5-fluorouracil in colon and prostate cancer cell lines. The type of interaction was described using the Chou-Talalay method. The cytostatic and cytotoxic activities of the most promising combined treatments were investigated. In conclusion, we showed that combined treatment with 5-fluorouracil and 2-oxohexyl isothiocyanate acted synergistically in colon cancer. This activity is dependent on the cytostatic properties of the tested compounds and leads to the intensification of their individual cytotoxic activity. The apoptotic process is considered to be the main mechanism of cytotoxicity in this combined treatment.  相似文献   

13.
Breast cancer is still one of the leading causes of mortality in the female population. Despite the campaigns for early detection, the improvement in procedures and treatment, drastic improvement in survival rate is omitted. Discovery of aquaporins, at first described as cellular plumbing system, opened new insights in processes which contribute to cancer cell motility and proliferation. As we discover new pathways activated by aquaporins, the more we realize the complexity of biological processes and the necessity to fully understand the pathways affected by specific aquaporin in order to gain the desired outcome–remission of the disease. Among the 13 human aquaporins, AQP3 and AQP5 were shown to be significantly upregulated in breast cancer indicating their role in the development of this malignancy. Therefore, these two aquaporins will be discussed for their involvement in breast cancer development, regulation of oxidative stress and redox signalling pathways leading to possibly targeting them for new therapies.  相似文献   

14.
房建国  陆曼  马兰萍  杨立  吴隆民  刘中立 《中国化学》2002,20(11):1313-1318
IntroductionResveratrol (3,5 ,4′ trihydroxy trans stilbene ,1)isanaturallyoccurringphytoalexinpresentingrapesandotherplants .ItspresenceinredwinehasbeensuggestedtobelinkedtothelowincidenceofheartdiseasesinsomeregionsofFrance ,theso called“Frenchparadox” ,i .e .,d…  相似文献   

15.
16.
Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.  相似文献   

17.
The growing knowledge about the harmful effects caused by some synthetic ingredients present in skincare products has led to an extensive search for natural bioactives. Thus, this study aimed to investigate the dermatological potential of five fractions (F1–F5), obtained by a sequential extraction procedure, from the brown seaweed Saccorhiza polyschides. The antioxidant (DPPH, FRAP, ORAC and TPC), anti-enzymatic (collagenase, elastase, hyaluronidase and tyrosinase), antimicrobial (Staphylococcus epidermidis, Cutibacterium acnes and Malassezia furfur), anti-inflammatory (nitric oxide, tumor necrosis factor-α, interleukin-6 and interleukin-10) and photoprotective (reactive oxygen species) properties of all fractions were evaluated. The ethyl acetate fraction (F3) displayed the highest antioxidant and photoprotective capacity, reducing ROS levels in UVA/B-exposed 3T3 fibroblasts, and the highest anti-enzymatic capacity against tyrosinase (IC50 value: 89.1 µg/mL). The solid water-insoluble fraction (F5) revealed the greatest antimicrobial activity against C. acnes growth (IC50 value: 12.4 µg/mL). Furthermore, all fractions demonstrated anti-inflammatory potential, reducing TNF-α and IL-6 levels in RAW 264.7 macrophages induced with lipopolysaccharides. Chemical analysis of the S. polyschides fractions by NMR revealed the presence of different classes of compounds, including lipids, polyphenols and sugars. The results highlight the potential of S. polyschides to be incorporated into new nature-based skincare products.  相似文献   

18.
The use of cancer chemotherapy sensitizers is a promising approach to induce the effect of clinically used anticancer treatments. One of the interesting targets is Tyrosyl-DNA Phosphodiesterase 1 (Tdp1), a DNA-repair enzyme, that may prevent the action of clinical Topoisomerase 1 (Top1) inhibitors, such as topotecan (Tpc). Tdp1 eliminates covalent Top1-DNA (Top1c) complexes that appear under the action of topotecan and determines the cytotoxic effect of this drug. We hypothesize that Tdp1 inhibition would sensitize cells towards the effect of Tpc. Herein, we report the synthesis and study of lipophilic derivatives of purine nucleosides that efficiently suppress Tdp1 activity, with IC50 values in the 0.3–22.0 μM range. We also showed that this compound class can enhance DNA damage induced by topotecan in vitro by Comet assay on human cell lines HeLa and potentiate the antitumor effect of topotecan in vivo on a mice ascitic Krebs-2 carcinoma model. Thereby, this type of compound may be useful to develop drugs, that sensitize the effect of topotecan and reduce the required dose and, as a result, side effects.  相似文献   

19.
In this article, we describe the antimicrobial properties of pristine anodised aluminium oxide matrices—the material many consider biologically inert. During a typical anodisation process, chromium and chlorine compounds are used for electropolishing and the removal of the first-step aluminium oxide. Matrices without the use of those harmful compounds were also fabricated and tested for comparison. The antibacterial tests were conducted on four strains of Escherichia coli: K12, R2, R3 and R4. The properties of the matrices were also compared to the three types of antibiotics: ciprofloxacin, bleomycin and cloxacillin using the Minimal Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) tests. Moreover, DNA was isolated from the analysed bacteria which was additionally digested with formamidopyrimidine-DNA glycosylase (Fpg) protein from the group of repair glycosases. These enzymes are markers of modified oxidised bases in nucleic acids produced during oxidative stress in cells. Preliminary cellular studies, MIC and MBC tests and digestion with Fpg protein after modification of bacterial DNA suggest that these compounds may have greater potential as antibacterial agents than the aforementioned antibiotics. The described composites are highly specific for the analysed model Escherichia coli strains and may be used in the future as new substitutes for commonly used antibiotics in clinical and nosocomial infections in the progressing pandemic era. The results show much stronger antibacterial properties of the functionalised membranes on the action of bacterial membranes in comparison to the antibiotics in the Fpg digestion experiment. This is most likely due to the strong induction of oxidative stress in the cell through the breakdown of the analysed bacterial DNA.  相似文献   

20.
Cardiotoxicity is one of the main side effects of doxorubicin (Dox) treatment. Dox could induce oxidative stress, leading to an opening of the mitochondrial permeability transition pore (mPTP) and apoptosis in cardiomyocytes. Previous studies have shown that Cryptotanshinone (Cts) has potential cardioprotective effects, but its role in Dox-induced cardiotoxicity (DIC) remains unknown. A Dox-stimulated H9C2 cell model was established. The effects of Cts on cell viability, reactive oxygen species (ROS), superoxide ion accumulation, apoptosis and mitochondrial membrane potential (MMP) were evaluated. Expressions of proteins in Akt-GSK-3β pathway were detected by Western blot. An Akt inhibitor was applied to investigate the effects of Cts on the Akt-GSK-3β pathway. The effects of Cts on the binding of p-GSK-3β to ANT and the formation of the ANT-CypD complex were explored by immunoprecipitation assay. The results showed that Cts could increase cell viability, reduce ROS levels, inhibit apoptosis and protect mitochondrial membrane integrity. Cts increased phosphorylated levels of Akt and GSK-3β. After cells were co-treated with an Akt inhibitor, the effects of Cts were abolished. An immunoprecipitation assay showed that Cts significantly increased GSK-3β-ANT interaction and attenuated Dox-induced formation of the ANT-CypD complex, thereby inhibiting opening of the mPTP. In conclusion, Cts could ameliorate oxidative stress and apoptosis via the Akt-GSK-3β-mPTP pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号