首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here the synthesis, structure, magnetic and photoluminescent properties of three new bifunctional Schiff‐base complexes [Dy(L1)2(py)2][B(Ph)4]?py ( 1 ), [Dy(L1)2Cl(DME)] ? 0.5DME ( 2 ) and [Dy(L2)2Cl] ? 2.5(C7H8) ( 3 ) (HL1=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxy‐5‐methylphenyl)imino]methyl]; HL2=Phenol, 2,4‐bis(1,1‐dimethylethyl)‐6‐[[(2‐methoxyphenyl)imino]methyl]). The coordination environment of the Dy3+ ion and the direction of the anisotropic axis may be controlled by the combination of the substituent groups of the Schiff bases, the nature of the counter‐ions (Cl? vs. BPh4?) and the coordinative solvent molecules. A zero‐field slow relaxation of the magnetization is evidenced for all complexes but strong differences in the relaxation dynamics are observed depending on the Dy3+ site geometry. In this sense, complex 1 exhibits an anisotropy barrier of 472 cm?1, which may be favourably compared to other related examples due to the shortening of the Dy?O bond in the axial direction. Besides, the three complexes exhibit a ligand‐based luminescence making them as bifunctional magneto‐luminescent systems.  相似文献   

2.
Two N'-(2-hydroxybenzylidene)pyridine N-oxide-carbohydrazide (H3L)-based coordination complexes with the formula [Ln2(DMF)2(OAc)2(HL)2]n (Ln = Dy for 1 and Eu for 2 ) were solvothermally synthesized. Crystal structures, thermal stabilities, magnetic and luminescent properties of the two complexes were fully investigated. Both complexes are isomorphic two-dimensional layers with centrosymmetric {Ln2} subunits extended by doubly deprotonated HL2– connectors. Complex 1 with highly anisotropic DyIII spin exhibits slightly frequency-dependent magnetic relaxations under zero dc field with an effective energy barrier of ca. 6.84 K. EuIII-based complex 2 displays only one weak fluorescent emission around 532 nm with the absence of characteristic emission of EuIII ion. These results provide helpful hints of the hydrazide Schiff-functionalized organic ligands on the function modulations of the resulting Ln complexes.  相似文献   

3.
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.  相似文献   

4.
Ernesto Brunet 《Tetrahedron》2005,61(28):6757-6763
New ionophores derived from 2,6-bis(N-pyrazolyl)pyridine and aceto/benzophenone have been synthesized and fully characterized. The lanthanide complexes of these new ligands were studied from their UV-vis and fluorescence data. Eu3+ and Tb3+ complexes were easily formed and their photophysical properties measured. In all cases, lanthanide emission lifetimes were in the range of ms albeit quantum yields were relatively low. Possible flaws in the energy-transfer mechanisms are discussed.  相似文献   

5.
Two dinuclear lanthanide complexes with pentadentate ligand 3‐[bis(pyridine‐2‐ylmethyl)amino]propane‐1,2‐diol (H2L), formulated as [Ln2(HL)2(NO3)2(H2O)2] · 1.5NO3 · 0.5I [Ln = Tb ( ZTU‐1 ) and Eu ( ZTU‐2 ); ZTU = Zhaotong University] were synthesized and structurally characterized. ZTU‐1 and ZTU‐2 are isomorphous and feature a butterfly‐like arrangement. The fluorescence properties of ZTU‐1 and ZTU‐2 are investigated and slow magnetic relaxation behavior is observed in ZTU‐1 .  相似文献   

6.
Perovskite‐type phases SrFe1–xTixO3–y with 0.1 ≤ x ≤ 0.7 have been prepared from the oxides, and, in order to reach high oxygen contents and FeIV fractions, annealed at oxygen pressures of 60 MPa. The materials were characterised by powder x‐ray and neutron diffraction, 57Fe Mössbauer spectroscopy, and magnetic susceptibility measurements. All samples of the series crystallise in a cubic perovskite structure and reveal considerable oxygen deficiency. The Mössbauer parameters suggest that for x = 0.1, where the FeIV fraction is about 90%, the itinerant electronic state of SrFeO3 is essentially retained. In materials with larger x increasing amounts of TiIV and FeIII ions lead to a stronger localisation of the σ* (Fe 3 d – O 2 p) electrons. There is no evidence for a charge disproportionation of FeIV in any of the materials. Magnetic susceptibility measurements show a divergence of zero‐field cooled and field‐cooled data below a temperature Tm and deviations from Curie‐Weiss behaviour above Tm. The data are indicative of spin‐glass behaviour due to disorder and competing exchange interactions.  相似文献   

7.
Magnetic and optical properties of ZnO co-doped with transition metal and carbon have been investigated using density functional theory based on first-principles ultrasoft pseudopoten-tial method. Upon co-doping with transition metal (TM) and carbon, the calculated results show a shift in the Fermi level and a remarkable change in the covalency of ZnO. Such cases energetically favor ferromagnetic semiconductor with high Curie temperature due to p-d exchange interaction between TM ions and holes induced by C doping. The total en-ergy difference between the ferromagnetic and the antiferromagnetic configurations, spatial charge and spin density, which determine the magnetic ordering, were calculated in co-doped systems for further analysis of magnetic properties. It was also discovered that optical prop-erties in the higher energy region remain relatively unchanged while those at the low energyregion are changed after the co-doping. These changes of optical properties are qualitatively explained based on the calculated electronic structure. The validity of our calculation in comparison with other theoretical predictions will further motivate the experimental inves-tigation of (TM, C) co-doped ZnO diluted magnetic semiconductors.  相似文献   

8.
Seven lanthanide complexes [Ln(OPPh3)3(NO3)3] ( 1 – 3 ) (OPPh3 = triphenylphosphine oxide, Ln = Nd, Sm, Gd), [Dy(OPPh3)4(NO3)2](NO3) ( 4 ), [Ln(OPPh3)3(NO3)3]2 ( 5 – 7 ) (Ln = Pr, Eu, Gd) were synthesized by the reactions of different lanthanide salts and OPPh3 ligand in the air. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR and fluorescence spectra. Structure analysis shows that complexes 1 – 4 are mononuclear complexes formed by OPPh3 ligands and nitrates. The asymmetric units of complexes 5 – 7 consist of two crystallographic‐separate molecules. Complex 1 is self‐assembled to construct a 2D layer‐structure of (4,4) net topology by hydrogen bond interactions. The other complexes show a 1D chain‐like structure that was assembled by OPPh3 ligands and nitrate ions through C–H ··· O interactions. Solid emission spectra of compounds 4 and 6 are assigned to the characteristic fluorescence of Tb3+ (λem = 480, 574 nm) and Eu3+ (λem = 552, 593, 619, 668 nm).  相似文献   

9.
Solvothermal combination of trivalent lanthanide metal precursors with 1, 2, 4, 5‐cyclohexanetetracarboxylic acid (L) ligand has afforded the preparation of a family of eight new coordination polymers [Ln4(L)3(H2O)10] · 7H2O (Ln = Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) ( 1 – 8 ). Structural analyses reveal that the 1, 2, 4, 5‐cyclohexanetetracarboxylic acid ligand with e,a,a,e (LI) conformation displays a μ4‐(κ3O, O, O5)(κ2O2,O2)(κ2O4,O4)‐bridging mode to generate 3D frameworks of complexes 1 – 8 and the α‐Po topology with the short Schläfli symbol {412.63} could be observed in complexes 1 – 8 . The near‐infrared luminescence properties were studied, and the results have shown that the HoIII, ErIII, and YbIII complexes emit typical near‐infrared luminescence in the solid‐state. Variable‐temperature magnetic susceptibility measurements of complexes 2 – 7 have shown that complex 2 (Gd) shows the ferromagnetic coupling between magnetic centers, whereas the complexes 3 – 7 show the antiferromagnetic coupling between magnetic centers. Additionally, the thermogravimetric analyses were discussed.  相似文献   

10.
11.
Three lanthanide complexes with the ligand 4‐sulfophthalate (sp3–), [Ln(H2O)2(sp)]n [Ln = Dy ( 1 ), Tb ( 2 ), and Er ( 3 )], were solvo‐/hydrothermally synthesized by changing the rare earth cations, and were characterized structurally and photophysically. Complexes 1 – 3 are isostructural, exhibiting a two‐dimensional layered structure with centrosymmetric dinuclear subunits infinitely extended by 4‐connected sp3– connectors. Photoluminescence spectra of 1 – 3 demonstrate that anionic sp3– ligand can serve as a functionalized chromophore to sensitize the luminescent emission of the lanthanide ion, suggesting that the sp3–‐involved lanthanide complexes can be used as novel optical materials.  相似文献   

12.
Six lanthanide complexes [Ln(pmc)2NO3]n [Hpmc = pyrimidine‐2‐carboxylic acid, Ln = La ( 1 ), Pr ( 2 )], [Ln(pmc)2(H2O)3]NO3 · H2O [Ln = Eu ( 3 ), Tb ( 4 ) Dy ( 5 ), Er ( 6 )] were synthesized by the reactions of lanthanide nitrate and pyrimidine‐2‐carboxylic acid in water at room temperature. These complexes were characterized by single‐crystal X‐ray diffraction analysis, elemental analysis, IR, circular dichroism (CD) and fluorescence spectra. Structure analysis shows that complexes 1 and 2 are isostructural with P43212 space group, whereas isostructural complexes 3 – 6 belong to the P21/c space group. In complexes 1 and 2 , the central metal atoms are coordinated by nitrates and pmc, which are self‐assembled to construct a 3D porous network with 62.62.62.62.62.62 (66) topology. In complexes 3 – 6 , H2O and pmc ligands are coordinated and the complexes exhibit a one‐dimensional zigzag chain, which is further expanded into a 3D structure by hydrogen bonding. In addition, the circular dichroism of 1 and 2 proves that the two complexes are both chiral with achiral ligand of Hpmc. Luminescent measurements of compounds 3 – 5 indicate that the characteristic fluorescence of Eu3+, Tb3+, and Dy3+ are observed.  相似文献   

13.
Two cobalt(II) coordination polymers, {[Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]·(OH)3·(Me4N)·4,4′‐bipy·4H2O}n ( 1 ) and {[Co(μ‐4,4′‐bipy)(H2O)4]·suc·4H2O}n ( 2 ) (4,4′‐bipy = 4,4′‐bipyridine, suc = succinate dianions), were hydrothermally synthesized and structurally characterized by X‐ray diffraction analysis, UV‐Vis‐NIR, and ICP. The main structure feature common to the both polymers is presence of the infinite linear chains, [Co(μ‐4,4′‐bipy)(4,4′‐bipy)2(H2O)2]n ( 1 ) and [Co(μ‐4,4′‐bipy)(H2O)4]n ( 2 ), respectively. In 1 , the chains are further linked by the hydrogen‐bond and π‐π stacking interaction, producing extended layer structure. The 4,4′‐bipy molecules in 1 play three different roles. In 2 , the chains are linked into three‐dimensional network structure via complicated hydrogen bonding system. The variable temperature (2.0~300 K) magnetic susceptibility of 1 indicates a tendency of spin‐transition in the temperature range of 110 K to 22 K, which attributes to the transition of high‐spin to low‐spin from Co2+(d7) ion. Also, the result of surface photovoltage spectroscopy (SPS) reveals that the polymer 1 has significant photoelectric conversion property in the region of 300‐800 nm.  相似文献   

14.
The Eu? Bi system contains the phases Eu5Bi3, Eu4Bi3 and Eu11Bi10. The structure types of these phases have been determined by powder X-ray diffraction. Crystals of Eu4Bi3 (cubic, space group I4 3d; a = 9.920 Å, Z = 4, T = 130 K, R1/wR2 = 4.86/10.84%) were obtained in low yield by reaction of Eu, Mn, and Bi in the ratio 14:1:11 in a closed niobium tube (heating rate 30°C/h; reaction at 1050°C for 300 h, cooling rate 100°C/h). The crystal structure consists of distorted octahedra made up of six Bi coordinated to a central Eu atom. Eu is also coordinated to a three other Eu atoms and forms a three-dimensional network composed of interconnected rings. The Bi atoms are coordinated to eight Eu atoms. High yields of Eu4Bi3 can be prepared by reacting stoichiometric amount of the elements in a sealed tantalum tube at 1100°C for 24 h. Temperature dependent magnetic susceptibility is consistent with antiferromagnetic behavior with an ordering temperature of 18 K. The data could be fit with the Curie-Weiss law and a moment of 7.38 μB/Eu is obtained, consistent with all Eu atoms being Eu11. Temperature dependent resistivity indicates that Eu4Bi3 is a metal with a room temperature resistance of 1.3 Ωcm.  相似文献   

15.
Three new homodinuclear lanthanide(III) complexes [Ln2(L)6(2,2′‐bipy)2] [Ln = TbIII ( 1 ), SmIII ( 2 ), EuIII ( 3 ); HL = 3‐hydroxycinnamic acid (3‐HCA); 2,2′‐bipy = 2,2′‐bipyridine] were synthesized and characterized by IR spectroscopy, elemental analyses, and X‐ray diffraction techniques. Complexes 1 – 3 crystallize in triclinic system, space group P$\bar{1}$ . In all complexes the lanthanide ions are nine‐coordinate by two nitrogen atoms from the 2,2′‐bipy ligand and seven oxygen atoms from one chelating L ligands and four bridging L ligands, forming distorted tricapped trigonal prismatic arrangements. The lanthanide(III) ions are intramolecularly bridged by eight carboxylate oxygen atoms forming dimeric complexes with Ln ··· Ln distances of 3.92747(15), 3.9664(6), and 3.9415(4) Å for complexes 1 – 3 , respectively. The luminescent properties in the solid state of HL ligand and EuIII complex are also discussed.  相似文献   

16.
刘尧  孟健 《应用化学》2012,29(2):196-199
通过向杂化体系中引入特殊的有机配体2-(2-氨基乙基)吡啶,利用溶液冷却技术,合成了一种二维层状有机-无机杂化钙钛矿结构材料的化合物(C7H12N2)PbBr4的晶体。 X射线单晶衍射结果表明,化合物(C7H12N2)PbBr4的单晶结构属于正交晶系,Pbca空间群,a=1.702 3 nm,b=0.828 9 nm,c=2.022 4 nm,Z=8。 无机部分是由共顶点的PbBr6金属卤化物八面体组成的二维平面片层。 采用了相对扭曲构型的有机胺阳离子与二维无机片层通过氢键作用组成了杂化钙钛矿结构。 对其光学性质进行了测试。荧光光谱的特征发射峰出现在422 nm处。  相似文献   

17.
Five isostructural tetranuclear lanthanide complexes with the general formula [Ln4(teaH2)2(teaH)2(NO3)6] · 2CH3OH [Ln3+ = Dy3+ ( 1 ), Tb3+ ( 2 ), Ho3+ ( 3 ), Er3+ ( 4 ), and Gd3+ ( 5 )] were successfully synthesized by the reaction of various lanthanide nitrate and triethanolamine (teaH3) ligand. Single crystal X-ray analyses reveal the eight-coordinate Ln3+ centers adopt a slightly distorted triangular dodecahedron geometry and nine-coordinate Ln3+ ions own an approximately capped square antiprism environment in similar zigzag Ln4 core. Magnetic studies demonstrate the presence of anitferromagnetic interactions between Ln3+ centers without obvious SMM behavior.  相似文献   

18.
A phosphor emitting both white light and broad near-infrared (NIR) radiation can simultaneously provide visual inspection and early signs of rotting of food products. The broad NIR emission is absorbed by the vibrational overtones of water molecules present in food items, providing the non-invasive image contrast to assess the food freshness. Here we design a phosphor, namely, Cr3+-Bi3+-codoped Cs2Ag0.6Na0.4InCl6, that simultaneously emit warm white light and broad NIR (1000 nm) radiation with quantum yield 27 %. This dual emitter is designed by combining the features of s2-electron (Bi3+) and d3-electron (Cr3+) doping in a weak crystal field of the halide perovskite host. excitation of Bi3+, using a commercial 370 nm ultraviolet light-emitting-diodes (UV-LED), yields both the emissions. A fraction of the excited Bi3+ dopants emit the warm white light, and the other fraction transfers its energy non-radiatively to Cr3+. Then the Cr3+ de-excites emitting broad NIR emission. Temperature dependent (6.4–300 K) photoluminescence in combination with Tanabe-Sugano diagram show that the Cr3+ experiences a weak crystal field ( =2.2), yielding the NIR emission. As a proof of concept, we fabricated a panel containing 122 phosphor-converted LEDs, demonstrating its capability to inspect food products.  相似文献   

19.
采用水热法合成了不同钇掺杂量的BaZrO3中空微球,并通过TEM,XRD和SEM等手段对样品进行了表征.结果表明,样品均为中空微球,钇掺杂进入BaZrO3晶格,产物均具有立方钙钛矿型结构.中空微球的粒径随钇掺杂量的增加由180 nm增大到300 nm.钇掺杂量小于3%时,可得到纯相.不同掺杂量的中空微球在410 nm光...  相似文献   

20.
Single crystals of two ternary thio‐germanates containing rare‐earth metals, Ln4(GeS4)3 (Ln = Ce ( I ), Nd ( II )), have been isolated from the reaction of anhydrous rare‐earth trichloride (LnCl3) and ternary sodium thio‐germanate (Na2GeS3) in evacuated quartz ampoules. We have determined the crystal structure of the compounds, which are isostructural to La4(GeS4)3 and crystallize in trigonal system in the space group R3c with the cell dimensions: I , a = b = 19.375(3) Å, c = 8.028(2) Å, Z = 6; II , a = b = 19.250(3) Å, c = 7.949(2) Å, Z = 6. The structure is built with the complex network of two independent tricapped trigonal prisms of CeS9, in which Ge atoms occupy tetrahedral holes of sulfur atoms. The bulk synthesis of the two compounds has also been achieved by the stoichiometric combination of the elements. The magnetic and optical properties of the compounds have been investigated. The magnetic moments of 2.32 and 3.49 μB for I and II , respectively, are in good agreement with the theoretical magnetic moments of Ce and Nd in the +3 oxidation state. The optical band gap of I is found to be located around 2.3 eV, while the optical band gap of II lies around 2.62 eV. In addition, Raman spectroscopic characterizations have also been performed for I , II , and La4(GeS4)3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号