首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing adsorptive separation processes based on C2H6-selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2H4 purification from C2H4/C2H6 mixtures, which however remains challenging. During our studies on two isostructural metal–organic frameworks ( Ni-MOF 1 and Ni-MOF 2 ), we found that Ni-MOF 2 exhibited significantly higher performance for C2H6/C2H4 separation than Ni-MOF-1 , as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C−H⋅⋅⋅π with C2H6 over C2H4 while the suitable pore spaces enforce its high C2H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg−1 of polymer-grade C2H4 product from equimolar C2H6/C2H4 mixtures at ambient conditions.  相似文献   

2.
The separation of acetylene (C2H2) from carbon dioxide (CO2) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2-selective porous materials are superior to the C2H2-selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2-selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g−1) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2/C2H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.  相似文献   

3.
A strategy called ultramicroporous building unit (UBU) is introduced. It allows the creation of hierarchical bi‐porous features that work in tandem to enhance gas uptake capacity and separation. Smaller pores from UBUs promote selectivity, while larger inter‐UBU packing pores increase uptake capacity. The effectiveness of this UBU strategy is shown with a cobalt MOF (denoted SNNU‐45) in which octahedral cages with 4.5 Å pore size serve as UBUs. The C2H2 uptake capacity at 1 atm reaches 193.0 cm3 g?1 (8.6 mmol g?1) at 273 K and 134.0 cm3 g?1 (6.0 mmol g?1) at 298 K. Such high uptake capacity is accompanied by a high C2H2/CO2 selectivity of up to 8.5 at 298 K. Dynamic breakthrough studies at room temperature and 1 atm show a C2H2/CO2 breakthrough time up to 79 min g?1, among top‐performing MOFs. Grand canonical Monte Carlo simulations agree that ultrahigh C2H2/CO2 selectivity is mainly from UBU ultramicropores, while packing pores promote C2H2 uptake capacity.  相似文献   

4.
Developing hydrogen-bonded organic frameworks (HOFs) that combine functional sites, size control, and storage capability for targeting gas molecule capture is a novel and challenging venture. However, there is a lack of effective strategies to tune the hydrogen-bonded network to achieve high-performance HOFs. Here, a series of HOFs termed as HOF-ZSTU-M (M=1, 2, and 3) with different pore structures are obtained by introducing structure-directing agents (SDAs) into the hydrogen-bonding network of tetrakis (4-carboxyphenyl) porphyrin (TCPP). These HOFs have distinct space configurations with pore channels ranging from discrete to continuous multi-dimensional. Single-crystal X-ray diffraction (SCXRD) analysis reveals a rare diversity of hydrogen-bonding models dominated by SDAs. HOF-ZSTU-2 , which forms a strong layered hydrogen-bonding network with ammonium (NH4+) through multiple carboxyl groups, has a suitable 1D “pearl-chain” channel for the selective capture of propylene (C3H6). At 298 K and 1 bar, the C3H6 storage density of HOF-ZSTU-2 reaches 0.6 kg L−1, representing one of the best C3H6 storage materials, while offering a propylene/propane (C3H6/C3H8) selectivity of 12.2. Theoretical calculations and in situ SCXRD provide a detailed analysis of the binding strength of C3H6 at different locations in the pearl-chain channel. Dynamic breakthrough tests confirm that HOF-ZSTU-2 can effectively separate C3H6 from multi-mixtures.  相似文献   

5.
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5 Å and a surface area of 289 m2 g−1. This COF possesses N−O paired groups which cooperatively interact with C2H2 instead of C2H4. TP-IQD nanosheets of ≈10 μm in width and ≈4 nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2H2 permeability and C2H2/C2H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.  相似文献   

6.
Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2 in C2H2/CO2 separation processes, CO2-selective sorbents are much less common. Here, we report the remarkable performance of MFU-4 (Zn5Cl4(bbta)3, bbta=benzo-1,2,4,5-bistriazolate) toward inverse CO2/C2H2 separation. The MOF facilitates kinetic separation of CO2 from C2H2, enabling the generation of high purity C2H2 (>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2 is excluded from MFU-4 by narrow pore windows formed by Zn−Cl groups. Postsynthetic F/Cl ligand exchange was used to synthesize an analogue ( MFU-4-F ) with expanded pore apertures, resulting in equilibrium C2H2/CO2 separation with reversed selectivity compared to MFU-4 . MFU-4-F also exhibits a remarkably high C2H2 adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2 (98 % purity) to be harvested from C2H2/CO2 mixtures by room temperature desorption.  相似文献   

7.
An ideal adsorbent for separation requires optimizing both storage capacity and selectivity, but maximizing both or achieving a desired balance remain challenging. Herein, a de-linker strategy is proposed to address this issue for metal–organic frameworks (MOFs). Broadly speaking, the de-linker idea targets a class of materials that may be viewed as being intermediate between zeolites and MOFs. Its feasibility is shown here by a series of ultra-microporous MOFs (SNNU-98-M, M=Mn, Co, Ni, Zn). SNNU-98 exhibit high volumetric C2H2 uptake capacity under low and ambient pressures (175.3 cm3 cm−3 @ 0.1 bar, 222.9 cm3 cm−3 @ 1 bar, 298 K), as well as extraordinary selectivity (2405.7 for C2H2/C2H4, 22.7 for C2H2/CO2). Remarkably, SNNU-98-Mn can efficiently separate C2H2 from C2H2/CO2 and C2H2/C2H4 mixtures with a benchmark C2H2/C2H4 (1/99) breakthrough time of 2325 min g−1, and produce 99.9999 % C2H4 with a productivity up to 64.6 mmol g−1, surpassing values of reported MOF adsorbents.  相似文献   

8.
The separation of C2H2 from C2H4 is one of the most challenging tasks due to the similarity of their physical properties. In addition, green synthetic protocol and adsorbent's stability are also the major concerns during the separation. Herein, under hydrothermal green synthesis conditions, an ultrastable ultramicroporous Zn-MOF was designed and synthesized with a high yield. The pore diameter of the Zn-MOF is 3.6 Å, which lies in between the diameters of C2H2 (3.3 Å) and C2H4 (4.2 Å) molecules, leading to an efficient separation of the C2H2/C2H4 mixtures by the sieving effect. The practical separation performance of C2H2/C2H4 was confirmed by the dynamic breakthrough experiments. Moreover, the high stability enables the adsorption capacity of the Zn-MOF to C2H2, which can be maintained under a wide range of pH (1–13). Molecular simulations were also performed to identify the different C2H2- and C2H4-binding sites in Zn-MOF.  相似文献   

9.
Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2H4 purification from C2H6 or C3H6 mixtures as well as recovery of C3H6 from C2H6/C3H6/C2H4 mixtures. The MOF exhibits the favorable C2H6 and C3H6 uptakes (>100 cm3 g−1 at 298 K under 100 kPa) as well as selective adsorption of C2H6 and C3H6 over C2H4. The C3H6- and C2H6-selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3H6 or C2H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg−1 and 15.4 L kg−1 of high-purity (≥99.9 %) C2H4 from C3H6/C2H4 and C2H6/C2H4 mixtures, but also provide a large high-purity (≥99.5 %) C3H6 recovery capacity of 60.1 L kg−1 from C3H6/C2H4 mixtures. More importantly, the high-purity C3H6 (≥99.5 %) and C2H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg−1 can be simultaneously obtained from C2H6/C3H6/C2H4 mixtures through a single adsorption/desorption cycle.  相似文献   

10.
Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g−1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g−1) and Xe uptake (1.29 mmol g−1), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C−H⋅⋅⋅Xe interactions with Xe atoms.  相似文献   

11.
Separation of acetylene (C2H2) from carbon dioxide (CO2) or ethylene (C2H4) is industrially important but still challenging so far. Herein, we developed two novel robust metal organic frameworks AlFSIX-Cu-TPBDA (ZNU-8) with znv topology and SIFSIX-Cu-TPBDA (ZNU-9) with wly topology for efficient capture of C2H2 from CO2 and C2H4. Both ZNU-8 and ZNU-9 feature multiple anion functionalities and hierarchical porosity. Notably, ZNU-9 with more anionic binding sites and three distinct cages displays both an extremely large C2H2 capacity (7.94 mmol/g) and a high C2H2/CO2 (10.3) or C2H2/C2H4 (11.6) selectivity. The calculated capacity of C2H2 per anion (4.94 mol/mol at 1 bar) is the highest among all the anion pillared metal organic frameworks. Theoretical calculation indicated that the strong cooperative hydrogen bonds exist between acetylene and the pillared SiF62− anions in the confined cavity, which is further confirmed by in situ IR spectra. The practical separation performance was explicitly demonstrated by dynamic breakthrough experiments with equimolar C2H2/CO2 mixtures and 1/99 C2H2/C2H4 mixtures under various conditions with excellent recyclability and benchmark productivity of pure C2H2 (5.13 mmol/g) or C2H4 (48.57 mmol/g).  相似文献   

12.
Introduction of pore partition agents into hexagonal channels of MIL-88 type (acs topology) endows materials with high tunability in gas sorption. Here, we report a strategy to partition acs framework into pacs (partitioned acs) crystalline porous materials (CPM). This strategy is based on insertion of in situ synthesized 4,4′-dipyridylsulfide (dps) ligands. One third of open metal sites in the acs net are retained in pacs MOFs; two thirds are used for pore-space partition. The Co2V-pacs MOFs exhibit near or at record high uptake capacities for C2H2, C2H4, C2H6, and CO2 among MOFs. The storage capacity of C2H2 is 234 cm3 g−1 (298 K) and 330 cm3 g−1 (273 K) at 1 atm for CPM-733-dps (the Co2V-BDC form, BDC=1,4-benzenedicarboxylate). These high uptake capacities are accomplished with low heat of adsorption, a feature desirable for low-energy-cost adsorbent regeneration. CPM-733-dps is stable and shows no loss of C2H2 adsorption capacity following multiple adsorption–desorption cycles.  相似文献   

13.
Rational design of high nuclear copper cluster-based metal–organic frameworks has not been established yet. Herein, we report a novel MOF ( FJU-112 ) with the ten-connected tetranuclear copper cluster [Cu4(PO3)2(μ2-H2O)2(CO2)4] as the node which was capped by the deprotonated organic ligand of H4L (3,5-Dicarboxyphenylphosphonic acid). With BPE (1,2-Bis(4-pyridyl)ethane) as the pore partitioner, the pore spaces in the structure of FJU-112 were divided into several smaller cages and smaller windows for efficient gas adsorption and separation. FJU-112 exhibits a high separation performance for the C2H2/CO2 separation, which were established by the temperature-dependent sorption isotherms and further confirmed by the lab-scale dynamic breakthrough experiments. The grand canonical Monte Carlo simulations (GCMC) studies show that its high C2H2/CO2 separation performance is contributed to the strong π-complexation interactions between the C2H2 molecules and framework pore surfaces, leading to its more C2H2 uptakes over CO2 molecules.  相似文献   

14.
Acetylene (C2H2) removal from ethylene (C2H4) is a crucial step in the production of polymer-grade C2H4 but remains a daunting challenge because of the similar physicochemical properties of C2H2 and C2H4. Currently energy-intensive cryogenic distillation processes are used to separate the two gases industrially. A robust ultramicroporous metal–organic framework (MOF), Ni3(pzdc)2(7 Hade)2, is reported for efficient C2H2/C2H4 separation. The MOF comprises hydrogen-bonded linked one-dimensional (1D) chains, and features high-density open metal sites (2.7 nm−3) and electronegative oxygen and nitrogen sites arranged on the pore surface as cooperative binding sites. Theoretical calculations, in situ powder X-ray diffraction and Fourier-transform infrared spectroscopy revealed a synergistic adsorption mechanism. The MOF possesses S-shaped 1D pore channels that efficiently trap trace C2H2 at 0.01 bar with a high C2H2 uptake of 60.6 cm3 cm−3 and C2H2/C2H4 selectivity.  相似文献   

15.
One-step separation of C2H4 from ternary C2 mixtures by physisorbents remains a challenge to combine excellent separation performance with high stability, low cost, and easy scalability for industrial applications. Herein, we report a strategy of constructing negative electrostatic pore environments in a stable, low-cost, and easily scaled-up aluminum MOF (MOF-303) for efficient one-step C2H2/C2H6/C2H4 separation. This material exhibits not only record high C2H2 and C2H6 uptakes, but also top-tier C2H2/C2H4 and C2H6/C2H4 selectivities at ambient conditions. Theoretical calculations combined with in situ infrared spectroscopy indicate that multiple N/O sites on pore channels can build a negative electro-environment to provide stronger interactions with C2H2 and C2H6 over C2H4. Breakthrough experiments confirm its exceptional separation performance for ternary mixtures, affording one of the highest C2H4 productivity of 1.35 mmol g−1. This material is highly stable and can be easily synthesized at kilogram-scale from cheap raw materials using a water-based green synthesis. The benchmark combination of excellent separation properties with high stability and low cost in scalable MOF-303 has unlocked its great potential in this challenging industrial separation.  相似文献   

16.
Rigid molecular sieving materials are the ideal candidates for gas separation (e. g., C2H2/C2H4) due to their ultrahigh adsorption selectivity and the absence of gas co-adsorption. However, the absolute molecular sieving effect for C2H2/C2H4 separation has rarely been realized because of their similar physicochemical properties. Herein, we demonstrate the absolute molecular sieving of C2H2 from C2H4 by a rigid ultra-microporous metal-organic framework ( F−PYMO−Cu ) with 1D regular channels (pore size of ca. 3.4 Å). F−PYMO−Cu exhibited moderate acetylene uptake (35.5 cm3/cm3), but very low ethylene uptake (0.55 cm3/cm3) at 298 K and 1 bar, yielding the second highest C2H2/C2H4 uptake ratio of 63.6 up to now. One-step C2H4 production from a binary mixture of C2H2/C2H4 and a ternary mixture of C2H2/CO2/C2H4 at 298 K was achieved and verified by dynamic breakthrough experiments. Coupled with excellent thermal and water stability, F−PYMO−Cu could be a promising candidate for industrial C2 separation tasks.  相似文献   

17.
Herein, the synthesis of three nickel(II) dithiophosphonate complexes of the type [Ni{S2P(OR)(4-C6H4OMe)}2] [R=H ( 1 ), C3H7 ( 2 )] and [Ni{S2P(OR)(4-C6H4OEt}2] [R=(C6H5)2CH ( 3 )] is described; their structures were confirmed by single-crystal X-ray studies. These complexes were subjected to surfactant/solvent reactions at 300 °C for one hour as flexible molecular precursors to prepare either nickel sulfide or nickel phosphide particles. The decomposition of complex 2 in tri-octylphosphine oxide/1-octadecene (TOPO/ODE), TOPO/tri-n-octylphosphine (TOP), hexadecylamine (HDA)/TOP, and HDA/ODE yielded hexagonal NiS, Ni2P, Ni5P4, and rhombohedral NiS, respectively. Similarly, the decomposition of complex 1 in TOPO/TOP and HDA/TOP yielded hexagonal Ni2P and Ni5P4, respectively, and that of complex 3 in similar solvents led to hexagonal Ni5P4, with TOP as the likely phosphorus provider. Hexagonal NiS was prepared from the solvent-less decomposition of complexes 1 and 2 at 400 °C. NiS (rhom) had the best specific supercapacitance of 2304 F g−1 at a scan rate of 2 mV s−1 followed by 1672 F g−1 of Ni2P (hex). Similarly, NiS (rhom) and Ni2P (hex) showed the highest power and energy densities of 7.4 kW kg−1 and 54.16 W kg−1 as well as 6.3 kW kg−1 and 44.7 W kg−1, respectively. Ni5P4 (hex) had the lowest recorded overpotential of 350 mV at a current density of 50 mA cm−2 among the samples tested for the oxygen evolution reaction (OER). NiS (hex) and Ni5P4 (hex) had the lowest overpotentials of 231 and 235 mV to achieve a current density of 50 mA cm−2, respectively, in hydrogen evolution reaction (HER) examinations.  相似文献   

18.
Low-concentration ethane capture is crucial for environmental protection and natural gas purification. The ideal physisorbent with strong C2H6 interaction and large C2H6 uptake at low-concentration level has rarely been reported, due to the large pKa value and small quadrupole moment of C2H6. Herein, we demonstrate the perfectly size matching between the ultramicropore (pore size of 4.6 Å) and ethane (kinetic diameter of 4.4 Å) in a nickel pyridine-4-carboxylate metal–organic framework (IISERP-MOF 2 ), which enables the record-breaking performance for low concentration C2H6 capture. IISERP-MOF 2 exhibits the large C2H6 adsorption enthalpy of 56.7 kJ/mol, and record-high C2H6 uptake at low pressure of 0.01–0.1 bar and 298 K (1.8 mmol/g at 0.01 bar). Molecule simulations and C2H6-loading crystal structure analysis revealed that the maximized interaction sites in IISERP-MOF 2 with ethane molecule originates the strong C2H6 adsorption. The dynamic breakthrough experiments for gas mixtures of C2H6/N2(1/999, v/v) and C2H6/CH4 (5/95, v/v) proved the excellent low-concentration C2H6 capture performance.  相似文献   

19.
Adsorptive separation of C2H6 from C2H4 by adsorbents is an energy-efficient and promising method to boost the polymer grades C2H4 production. However, that C2H6 and C2H4 display very similar physical properties, making their separation extremely challenging. In this work, by regulating the pore environment in a family of chitosan-based carbon materials (C-CTS-1, C-CTS-2, C-CTS-4, and C-CTS-6)- we target ultrahigh C2H6 uptake and C2H6/C2H4 separation, which exceeds most benchmark carbon materials. Explicitly, the C2H6 uptake of C-CTS-2 (166 cm3/g at 100 kPa and 298 K) has the second-highest adsorption capacity among all the porous materials. In addition, C-CTS-2 gives C2H6/C2H4 selectivity of 1.75 toward a 1:15 mixture of C2H6/C2H4. Notably, the adsorption enthalpies for C2H6 in C-CTS-2 are low (21.3 kJ/mol), which will facilitate regeneration in mild conditions. Furthermore, C2H6/C2H4 separation performance was confirmed by binary breakthrough experiments. Under different ethane/ethylene ratios, C-CTS-X extracts a low ethane concentration from an ethane/ethylene mixture and produces high-purity C2H4 in one step. Spectroscopic measurement and diffraction analysis provide critical insight into the adsorption/separation mechanism. The nitrogen functional groups on the surface play a vital role in improving C2H6/C2H4 selectivity, and the adsorption capacities depend on the pore size and micropore volume. Moreover, these robust porous materials exhibit outstanding stability (up to 800 °C) and can be easily prepared on a large scale (kg) at a low cost (~$26 per kg), which is very significant for potential industrial applications.  相似文献   

20.
The separation of isomeric C4 paraffins is an important task in the petrochemical industry, while current adsorbents undergo a trade-off relationship between selectivity and adsorption capacity. In this work, the pore aperture of a cage-like Zn-bzc (bzc=pyrazole-4-carboxylic acid) is tuned by the stepwise installation methyl groups on its narrow aperture to achieve both molecular-sieving separation and high n-C4H10 uptake. Notably, the resulting Zn-bzc-2CH3 (bzc-2CH3=3,5-dimethylpyrazole-4-carboxylic acid) can sensitively capture n-C4H10 and exclude iso-C4H10, affording molecular-sieving for n-C4H10/iso-C4H10 separation and high n-C4H10 adsorption capacity (54.3 cm3 g−1). Breakthrough tests prove n-C4H10/iso-C4H10 can be efficiently separated and high-purity iso-C4H10 (99.99 %) can be collected. Importantly, the hydrophobic microenvironment created by the introduced methyl groups greatly improves the stability of Zn-bzc and significantly eliminates the negative effect of water vapor on gas separation under humid conditions, indicating Zn-bzc-2CH3 is a new benchmark adsorbent for n-C4H10/iso-C4H10 separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号