共查询到20条相似文献,搜索用时 9 毫秒
1.
Mixing behaviors of equal-sized glass beads in a rotating drum were investigated by both DEM simulations and experiments. The experiments indicated that higher rotation speed can significantly enhance mixing. The particle profiles predicted by 2D DEM simulation were compared with the experimental results from a quasi-2D drum, showing inconsistency due to reduction of contacts in the single-layer 2D simulation which makes the driving friction weaker than that in the quasi-2D test, better results could be rea... 相似文献
2.
《Particuology》2023
In this paper, we study the effects of the presence and shape of side walls and of the overall length of rotating cylindrical drums on the mixing of particles with differing sizes by application of the discrete element method (DEM). By varying the semi-axis of the spheroidally shaped side walls and the length of the overall drum, we observe the formation of circulation patterns near the side walls. Although there is a vast amount of literature studying mixing regimes in rotating drums, little is known about the effect of the side walls of the drum on particle mixing. The results of our study demonstrate that introducing curved side walls induces a strong circulation pattern near these side walls, but has, paradoxically, a negative impact on mixing and actually promotes segregation. The cause for this segregation is the difference in velocity of differently sized particles near the curved side walls. Large particles accumulate at the curved side walls, whereas small particles move away from the curved side walls. When the length of the drum is increased, the overall effect of the side walls is decreased, although it does remain observable, even in very large drums. 相似文献
3.
5.
《Particuology》2022
The motion and deformation of soft particles are commonly encountered and important in many applications. A discrete element-embedded finite element model (DEFEM) is proposed to solve soft particle motion and deformation, which combines discrete element and finite element methods. The collisional surface of soft particles is covered by several dynamical embedded discrete elements (EDEs) to model the collisional external forces of the particles. The particle deformation, motion, and rotation are independent of each other in the DEFEM. The deformation and internal forces are simulated using the finite element model, whereas the particle rotation and motion calculations are based on the discrete element model. By inheriting the advantages of existing coupling methods, the contact force and contact search between soft particles are improved with the aid of the EDE. Soft particle packing is simulated using the DEFEM for two cases: particle accumulation along a rectangular straight wall and a wall with an inclined angle. The large particle deformation in the lower layers can be simulated using current methods, where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region. This method can also be used to simulate the deformation, motion, and heat transfer of non-spherical soft particles. 相似文献
6.
采用离散单元法对回转筒内沙石物料的混合均匀性进行数值模拟研究,并选取回转筒转速、直径、提升条个数和石子填充率作为影响因素,分别设立3个水平,进行回转筒内物料混合的正交模拟,旨在对各因素的敏感性影响程度进行分析。基于试验结果选择物料混合时间和颗粒接触数率作为试验指标,对四个因素进行极差分析和方差分析。结果表明,回转筒转速、直径和石子填充率对物料混合时间的影响显著,提升条个数对混合时间的影响不显著;石子填充率、回转筒转速和提升条个数对物料混合后颗粒接触数率的影响显著,回转筒直径对物料混合后颗粒接触数率的影响不显著。 相似文献
7.
Application of DEM modified with enlarged particle model to simulation of bead motion in a bead mill
We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3-6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated.The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size. 相似文献
8.
Application of DEM modified with enlarged particle model to simulation of bead motion in a bead mill
《Particuology》2014
We applied the discrete element method (DEM) of simulation modified by an enlarged particle model to simulate bead motion in a large bead mill. The stainless-steel bead mill has inner diameter of 102 mm and mill length of 198 mm. The bead diameter and filling ratio were fixed respectively at 0.5 mm and 85%. The agitator rotational speed was changed from 1863 to 3261 rpm. The bead motion was monitored experimentally using a high-speed video camera through a transparent mill body. For the simulation, enlarged particle sizes were set as 3–6 mm in diameter. With the DEM modified by the enlarged particle model, the motion of enlarged particles in a mill was simulated. The velocity data of the simulated enlarged particles were compared with those obtained in the experiment. The simulated velocity of the enlarged particles depends on the virtual frictional coefficient in the DEM model. The optimized value of the virtual frictional coefficient can be determined by considering the accumulated mean value. Results show that the velocity of the enlarged particles simulated increases with an increase in the optimum virtual frictional coefficient, but the simulated velocity agrees well with that determined experimentally by optimizing the virtual frictional coefficient in the simulation. The computing time in the simulation decreases with increased particle size. 相似文献
9.
《Particuology》2018
Effects of variable airflow on particle motion in spout-fluid beds are studied. Computational fluid dynamics using Navier–Stokes equations for the gas phase coupled with the discrete element method using Newton’s laws for the solid phase have been employed. Results indicate that increasing the fluidizing velocity diminishes dead zones and increases both the total height of the bed and the traversed distance by particles in the steady spout-fluid bed. In pulsed airflows, two configurations are investigated, namely, the spouted pulsed-fluidized bed with pulsed flow of the fluidizing velocity, and the pulsed-spouted fluidized bed with pulsed flow of the spouting velocity. The positive effect of pulsation on particle motion is shown and the effects of parameters, such as amplitude and frequency, on the dynamics of the bed are investigated in each configuration. An increase of up to 19% in traversed distance is found for the range studied, which suggests flow pulsation as a promising technique for increasing particle mixing in spout-fluid beds. 相似文献
10.
《Particuology》2017
A two-dimensional coupled lattice Boltzmann immersed boundary discrete element method is introduced for the simulation of polygonal particles moving in incompressible viscous fluids. A collision model of polygonal particles is used in the discrete element method. Instead of a collision model of circular particles, the collision model used in our method can deal with particles of more complex shape and efficiently simulate the effects of shape on particle–particle and particle–wall interactions. For two particles falling under gravity, because of the edges and corners, different collision patterns for circular and polygonal particles are found in our simulations. The complex vortexes generated near the corners of polygonal particles affect the flow field and lead to a difference in particle motions between circular and polygonal particles. For multiple particles falling under gravity, the polygonal particles easily become stuck owing to their corners and edges, while circular particles slip along contact areas. The present method provides an efficient approach for understanding the effects of particle shape on the dynamics of non-circular particles in fluids. 相似文献
11.
《Particuology》2023
In order to study the fragmentation law, the confined compression experiment of granular assemblies has been conducted to explore the particle breakage characteristic by DEM approach in this work. It is shown that contact and contact force during the loading process gradually transform from anisotropy to isotropy. Meanwhile, two particle failure modes caused by different contact force states are analyzed, which are single-through-crack failure and multi-short-crack failure. Considering the vertical distribution of the number of cracks and the four characteristic stress distributions (the stress related to the maximum contact force, the major principal stress, the deviatoric stress and the mean stress), it is pointed out that the stress based on the maximum contact force and the major principal stress can reflect the distribution of cracks accurately. In addition, the size effect of particle crushing indicates that small size particles are prone to break. The lateral pressure coefficient of four size particles during the loading process is analyzed to explain the reason for the size effect of particle breakage. 相似文献
12.
《Particuology》2022
During twin screw granulation (TSG), small particles, which generally have irregular shapes, agglomerate together to form larger granules with improved properties. However, how particle shape impacts the conveying characteristics during TSG is not explored nor well understood. In this study, a graphic processor units (GPUs) enhanced discrete element method (DEM) is adopted to examine the effect of particle shape on the conveying characteristics in a full scale twin screw granulator for the first time. It is found that TSG with spherical particles has the smallest particle retention number, mean residence time, and power consumption; while for TSG with hexagonal prism (Hexp) shaped particles the largest particle retention number is obtained, and TSG with cubic particles requires the highest power consumption. Furthermore, spherical particles exhibit a flow pattern closer to an ideal plug flow, while cubic particles present a flow pattern approaching a perfect mixing. It is demonstrated that the GPU-enhanced DEM is capable of simulating the complex TSG process in a full-scale twin screw granulator with non-spherical particles. 相似文献
13.
《Particuology》2015
This study presents a three-dimensional numerical study of the mixing and segregation of binary particle mixtures in a two-jet spout fluidized bed based on an Eulerian–Eulerian three-fluid model. Initially, the particle mixtures were premixed and packed in a rectangular fluidized bed. As the calculation began, the gas stream was injected into the bed from the distributor and jet nozzles. The model was validated by comparing the simulated jet penetration depths with corresponding experimental data. The main features of the complex gas–solid flow behaviors and the mechanism of mixing and segregation of the binary mixtures were analyzed. Moreover, further simulations were carried out to evaluate the effects of operating conditions on the mixing and segregation of binary particle mixtures. The results illustrate that mixing can be enhanced by increasing the jet velocity or enlarging the difference of initial proportions of binary particle mixtures. 相似文献
14.
The phenomenon of spontaneous particle percolation under gravity is investigated by means of the discrete element method. Percolation behaviors such as percolation velocity, residence time distribution and radial dispersion are examined under various conditions. It is shown that the vertical velocity of a percolating particle moving down through a packing of larger particles decreases with increasing the restitution coefficient between particles and diameter ratio of the percolating to packing particles. With the increase of the restitution coefficient, the residence time and radial dispersion of the percolating particles increase. The packing height affects the residence time and radial dispersion. But, the effect can be eliminated in the analysis of the residence time and radial dispersion when they are normalized by the average residence time and the product of the packing height and packing particle diameter, respectively. In addition, the percolation velocity is shown to be related to the vertical acceleration of the percolating particle when an extra constant vertical force is applied. Increasing the feeding rate of percolating particles decreases the dispersion coefficient. 相似文献
15.
《中国颗粒学报》2008,6(6)
The phenomenon of spontaneous particle percolation under gravity is investigated by means of the discrete element method. Percolation behaviors such as percolation velocity,residence time distribution and radial dispersion are examined under various conditions. It is shown that the vertical velocity of a percolating particle moving down through a packing of larger particles decreases with increasing the restitution coefficient between particles and diameter ratio of the percolating to packing particles. With the increase of the restitution coefficient,the residence time and radial dispersion of the percolating particles increase. The packing height affects the residence time and radial dispersion. But,the effect can be eliminated in the analysis of the residence time and radial dispersion when they are normalized by the average residence time and the product of the packing height and packing particle diameter,respectively.In addition,the percolation velocity is shown to be related to the vertical acceleration of the percolating particle when an extra constant vertical force is applied. Increasing the feeding rate of percolating particles decreases the dispersion coefficient. 相似文献
16.
《Particuology》2022
In industrial blast furnaces (BFs), the investigations involving the flow behaviors of particles and the resultant burden structure are essential to optimize its operation stability and energy consumption. With the advance of computing capability and mathematical model, the discrete element method (DEM) specialized in characterizing particle behavior has manifested its power in the investigation of BFs. In the framework of DEM, many particle models have been developed, but which model is more suitable for simulating the particle behaviors of BFs remains a question because real particles in BFs have large shape and size dispersity. Among these particle models, the super-ellipsoid model possesses the ability to change shape flexibly. Therefore, the focus of this study is to investigate whether the super-ellipsoid model can meet the requirement of authenticity and accuracy in simulating the behaviors of particles with large shape and size dispersity. To answer this question, a simplified BF charging system composed of a hopper and a storage bin is established. The charging process and the final packing structure are analyzed and compared between experiments and simulations with different shape indexes. The results show that super-ellipsoid particles have prominent advantages over spherical particles in terms of representing the real BF particles, and it can more reasonably reproduce the flow behaviors and packing structure of experimental particles. The computation cost of super-ellipsoid particles is also acceptable for engineering applications. Finally, the micro-scale characteristics of packing structure is analyzed and the single-ring charging process in industry-scale BF using super-ellipsoid particles is conducted. 相似文献
17.
《Particuology》2017
Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a binary mixture of granular particles in a horizontal rotating drum. Particles of two different sizes were poured into the drum until it was 50% full. Shear-driven segregation was induced by rotating the side-plates of the drum in the opposite direction to that of the cylindrical wall. We found that radial segregation diminished in these systems but did not completely vanish. In an ordinary rotating drum, a radial core of smaller particles is formed in the center of the drum, surrounded by larger revolving particles. In our system, however, the smaller particles were found to migrate toward the side-plates. The shear from anti-spinning side-plates reduces the voidage and increases the bulk density. As such, smaller particles in the mixer tend to move to denser regions. We varied the shear by changing the coefficient of friction on the side-plates to study the influence of shear rate on this migration. We also compared the extent of radial segregation with stationary side-plates and with side-plates moving in different angular directions. 相似文献
18.
《Particuology》2015
The random packing of tetrahedral particles is studied by applying the discrete element method (DEM), which simulates the effects of friction, height ratio, and eccentricity. The model predictions are analyzed in terms of packing density and coordination number (CN). It is demonstrated that friction has the maximal effect on packing density and mean CN among the three parameters. The packing density of the regular tetrahedron is 0.71 when extrapolated to a zero friction effect. The shape effects of height ratio and eccentricity show that the regular tetrahedron has the highest packing density in the family of tetrahedra, which is consistent with what has been reported in the literature. Compared with geometry-based packing algorithms, the DEM packing density is much lower. This demonstrates that the inter-particle mechanical forces have a considerable effect on packing. The DEM results agree with the published experimental results, indicating that the polyhedral DEM model is suitable for simulating the random packing of tetrahedral particles. 相似文献
19.
《Particuology》2016
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically. 相似文献
20.
《Particuology》2016
Despite the wide applications of powder and solid mixing in industry, knowledge on the mixing of polydisperse solid particles in rotary drum blenders is lacking. This study investigates the mixing of monodisperse, bidisperse, tridisperse, and polydisperse solid particles in a rotary drum using the discrete element method. To validate the model developed in this study, experimental and simulation results were compared. The validated model was then employed to investigate the effects of the drum rotational speed, particle size, and initial loading method on the mixing quality. The degree of mixing of polydisperse particles was smaller than that for monodisperse particles owing to the segregation phenomenon. The mixing index increased from an initial value to a maximum and decreased slightly before reaching a plateau for bidisperse, tridisperse, and polydisperse particles as a direct result of the segregation of particles of different sizes. Final mixing indices were higher for polydisperse particles than for tridisperse and bidisperse particles. Additionally, segregation was weakened by introducing additional particles of intermediate size. The best mixing of bidisperse and tridisperse particles was achieved for top–bottom smaller-to-larger initial loading, while that of polydisperse systems was achieved using top–bottom smaller-to-larger and top–bottom larger-to-smaller initial loading methods. 相似文献