首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%) of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with the π-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis.  相似文献   

2.
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH_2-MIL-125 MOFs with crystalline and porous covalent organic frameworks (COFs) materials and form a range of NH_2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH_2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield (94.7%) of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH_2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.  相似文献   

3.
We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 μmol h−1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.  相似文献   

4.
Two‐dimensional covalent organic frameworks (2D COFs), an emerging class of crystalline porous polymers, have been recognized as a new platform for efficient solar‐to‐hydrogen energy conversion owing to their pre‐designable structures and tailor‐made functions. Herein, we demonstrate that slight modulation of the chemical structure of a typical photoactive 2D COF (Py‐HTP‐BT‐COF) via chlorination (Py‐ClTP‐BT‐COF) and fluorination (Py‐FTP‐BT‐COF) can lead to dramatically enhanced photocatalytic H2 evolution rates (HER=177.50 μmol h?1 with a high apparent quantum efficiency (AQE) of 8.45 % for Py‐ClTP‐BT‐COF). Halogen modulation at the photoactive benzothiadiazole moiety can efficiently suppress charge recombination and significantly reduce the energy barrier associated with the formation of H intermediate species (H*) on polymer surface. Our findings provide new prospects toward design and synthesis of highly active organic photocatalysts toward solar‐to‐chemical energy conversion.  相似文献   

5.
Covalent organic frameworks(COFs) are emerging photocatalysts for hydrogen evolution in water splitting in recent years. They offer a pre-designable platform to design tailor-made structures and chemically adjustable functionality in terms of photocatalysis. In this review, we summarize the recent striking progress of COF-based photocatalysts in design and synthesis. Firstly, different approaches to functionalizing building blocks, diversifying linkages, extending π-conjugation and establishing D-A conjugation are illustrated for enhancing photocatalytic activity. Next, post-modification of backbones and pores is detailed for emphasizing the synergistic catalytic uniqueness of COFs. Besides, the strategy of preparing COF-related composites with various semiconductors is outlined for optimizing the electronic properties. Finally, we conclude with the current challenges and promising opportunities for the exploration of new COF-based photocatalysts.  相似文献   

6.
Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor–acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor–acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λmax from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.

Porphyrin-based donor–acceptor COFs are effective heterogeneous photocatalysts for photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT), including for aqueous polymerizations and under red-light excitation.  相似文献   

7.
Crystalline and porous covalent organic frameworks (COFs) and metal‐organic frameworks (MOFs) materials have attracted enormous attention in the field of photocatalytic H2 evolution due to their long‐range order structures, large surface areas, outstanding visible light absorbance, and tunable band gaps. In this work, we successfully integrated two‐dimensional (2D) COF with stable MOF. By covalently anchoring NH2‐UiO‐66 onto the surface of TpPa‐1‐COF, a new type of MOF/COF hybrid materials with high surface area, porous framework, and high crystallinity was synthesized. The resulting hierarchical porous hybrid materials show efficient photocatalytic H2 evolution under visible light irradiation. Especially, NH2‐UiO‐66/TpPa‐1‐COF (4:6) exhibits the maximum photocatalytic H2 evolution rate of 23.41 mmol g?1 h?1 (with the TOF of 402.36 h?1), which is approximately 20 times higher than that of the parent TpPa‐1‐COF and the best performance photocatalyst for H2 evolution among various MOF‐ and COF‐based photocatalysts.  相似文献   

8.
《中国化学快报》2020,31(9):2319-2324
Constructing heterostructures by combining COFs and TMD is a new strategy to design efficient photocatalysts for CO2 reduction reaction (CO2RR) due to their good stability, tunable band gaps and efficient charge separation. Based on the synthesis of completely novel C4N−COF in our previous reported work, a new C4N/MoS2 heterostructure was constructed and then the related structural, electronic and optical properties were also studied using first principle calculations. The interlayer coupling effect and charge transfer between the C4N and MoS2 layer are systematically illuminated. The reduced band gap of the C4N/MoS2 heterostructure is beneficial to absorb more visible light. For the formation of type-II band alignment, a built-in electric field appears which separates the photogenerated electrons and holes into different layers efficiently and produces redox active sites. The band alignment of the heterostructure ensures its photocatalytic activities of the whole CO2 reduction reaction. Furthermore, the charge density difference and charge carrier mobility confirm the existence of the built-in electric field at the interface of the C4N/MoS2 heterostructure directly. Finally, the high optical absorption indicates it is an efficient visible light harvesting photocatalyst. Therefore, this work could provide strong insights into the internal mechanism and high photocatalytic activity of the C4N/MoS2 heterostructure and offer guiding of designing and synthesizing COF/TMD heterostructure photocatalysts.  相似文献   

9.
Two-dimensional covalent organic frameworks (2D COFs), an emerging class of crystalline porous polymers, have been recognized as a new platform for efficient solar-to-hydrogen energy conversion owing to their pre-designable structures and tailor-made functions. Herein, we demonstrate that slight modulation of the chemical structure of a typical photoactive 2D COF (Py-HTP-BT-COF) via chlorination (Py-ClTP-BT-COF) and fluorination (Py-FTP-BT-COF) can lead to dramatically enhanced photocatalytic H2 evolution rates (HER=177.50 μmol h−1 with a high apparent quantum efficiency (AQE) of 8.45 % for Py-ClTP-BT-COF). Halogen modulation at the photoactive benzothiadiazole moiety can efficiently suppress charge recombination and significantly reduce the energy barrier associated with the formation of H intermediate species (H*) on polymer surface. Our findings provide new prospects toward design and synthesis of highly active organic photocatalysts toward solar-to-chemical energy conversion.  相似文献   

10.
Photocatalytic organic transformation is an efficient, energysaving and environmentally friendly strategy for organic synthesis. The key to developing a green and economical route for photocatalytic organic synthesis lies in the construction of optimal photocatalysts. Covalent organic frameworks(COFs), a kind of porous crystalline materials with characteristics of high surface area, excellent porosity, and superior thermo-chemical stability, have driven people to explore their potential as photocatalysts in photocatalytic organic transformations by virtue of their structural versatility and designability. Furthermore, the insolubility of COFs makes it possible to recycle the catalysts by simple technical means. In recent years, researchers have made great efforts to develop both the design strategies of COFs as heterogeneous photocatalysts and the reaction types of photocatalytic organic transformations. In this review, we focus on the design of COF-based photocatalytic materials and analyze the influence factors of photocatalytic performance. Moreover, we summarize the application of COFbased photocatalysts in photocatalytic organic conversion. Finally, the perspectives on new opportunities and challenges in the field are discussed.  相似文献   

11.
共价有机框架(COFs)材料是有机构筑基元通过共价键连接而形成的晶态有机多孔材料. COFs具有孔道结构规整、 及比表面积高等特点, 被广泛地应用于气体储存与分离、 催化、 传感、 储能及光电转化等领域. 将具有可调吸光能力的有机构筑基元引入到COFs中, 可使其展现出强大的光催化潜力. 近年来, COFs在光催化领域中发展迅猛. 本文总结了COFs在光催化产氢、 光催化二氧化碳还原、 光催化有机反应以及光催化污染物降解等方面的研究进展, 并展望了其在光催化领域的应用前景.  相似文献   

12.
The construction of 2D and 3D covalent organic frameworks (COFs) from functional moieties for desired properties has gained much attention. However, the influence of COFs dimensionality on their functionalities, which can further assist in COF design, has never been explored. Now, by selecting designed precursors and topology diagrams, 2D and 3D porphyrinic COFs (2D‐PdPor‐COF and 3D‐PdPor‐COF) are synthesized. By model building and Rietveld refinement of powder X‐ray diffraction, 2D‐PdPor‐COF crystallizes as 2D sheets while 3D‐PdPor‐COF adopts a five‐fold interpenetrated pts topology. Interestingly, compared with 2D‐PdPor‐COF, 3D‐PdPor‐COF showed interesting properties, including 1) higher CO2 adsorption capacity; 2) better photocatalytic performance; and 3) size‐selective photocatalysis. Based on this study, we believe that with the incorporation of functional moieties, the dimensionality of COFs can definitely influence their functionalities.  相似文献   

13.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

14.
Gold clusters loaded on various supports have been widely used in the fields of energy and biology. However, the poor photostability of Au clusters on support interfaces under prolonged illumination usually results in loss of catalytic performance. Covalent organic frameworks (COFs) with periodic and ultrasmall pore structures are ideal supports for dispersing and stabilizing Au clusters, although it is difficult to encapsulate Au clusters in the ultrasmall pores. In this study, a two‐dimensional (2D) COF modified with thiol chains in its pores was prepared. With ?SH groups as nucleation sites, Au nanoclusters (NCs) could grow in situ within the COF. The ultrasmall pores of the COF and the strong S?Au binding energy combine to improve the dispersibility of Au NCs under prolonged light illumination. Interestingly, Au–S–COF bridging as observed in this artificial Z‐scheme photocatalytic system is deemed to be an ideal means to increase charge‐separation efficiency.  相似文献   

15.
Photocatalytic hydrogen (H2) evolution represents a promising and sustainable technology. Covalent organic frameworks (COFs)-based photocatalysts have received growing attention. A 2D fully conjugated ethylene-linked COF (BTT-BPy-COF) was fabricated with a dedicated designed active site. The introduced bipyridine sites enable a facile post-protonation strategy to fine-tune the actives sites, which results in a largely improved charge-separation efficiency and increased hydrophilicity in the pore channels synergically. After modulating the degree of protonation, the optimal BTT-BPy-PCOF exhibits a remarkable H2 evolution rate of 15.8 mmol g−1 h−1 under visible light, which surpasses the biphenyl-based COF 6 times. By using different types of acids, the post-protonation is proved to be a potential universal strategy for promoting photocatalytic H2 evolution. This strategy would provide important guidance for the design of highly efficient organic semiconductor photocatalysts.  相似文献   

16.
The construction of stable covalent organic frameworks (COFs) for various applications is highly desirable. Herein, we report the synthesis of a novel two‐dimensional (2D) porphyrin‐based sp2 carbon‐conjugated COF (Por‐sp2c‐COF), which adopts an eclipsed AA stacking structure with a Brunauer—Emmett—Teller surface area of 689 m2 g?1. Owing to the C=C linkages, Por‐sp2c‐COF shows a high chemical stability under various conditions, even under harsh conditions such as 9 m HCl and 9 m NaOH solutions. Interestingly, Por‐sp2c‐COF can be used as a metal‐free heterogeneous photocatalyst for the visible‐light‐induced aerobic oxidation of amines to imines. More importantly, in comparison to imine‐linked Por‐COF, the inherent structure of Por‐sp2c‐COF equips it with several advantages as a photocatalyst, including reusability and high photocatalytic performance. This clearly demonstrates that sp2 carbon‐linked 2D COFs can provide an interesting platform for heterogeneous photocatalysis.  相似文献   

17.
18.
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C−H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ−COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ−COFE5−O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C−H functionalization than the corresponding NQ−COFE5. Specially, we evaluated the photocatalytic performance of NQ−COFE5−O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ−COFE5−O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.  相似文献   

19.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

20.
Imine-linked covalent organic frameworks (COFs) have been extensively studied in photocatalysis because of their easy synthesis and excellent crystallinity. The effect of imine-bond orientation on the photocatalytic properties of COFs, however, is still rarely studied. Herein, we report two novel COFs with different orientations of imine bonds using oligo(phenylenevinylene) moieties. The COFs showed similar structures but great differences in their photoelectric properties. COF-932 demonstrated a superior hydrogen evolution performance compared to COF-923 when triethanolamine was used as the sacrificial agent. Interestingly, the use of ascorbic acid led to the protonation of the COFs, further altering the direction of electron transfer. The photocatalytic performances were increased to 23.4 and 0.73 mmol g−1 h−1 for protonated COF-923 and COF-932, respectively. This study provides a clear strategy for the design of imine-linked COF-based photocatalysts and advances the development of COFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号