首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As an emerging class of promising porous materials, the development of two-dimensional conductive metal organic frameworks (2D c-MOFs) is hampered by the few categories and tedious synthesis of the specific ligands. Herein, we developed a nonplanar hexahydroxyl-functionalized Salphen ligand (6OH-Salphen) through a facile two-step synthesis, which was further applied to construct layered 2D c-MOFs through in situ one pot synthesis based on the synergistic metal binding effect of the N2O2 pocket of Salphen. Interestingly, the C2v-symmetry of ligand endows Cu-Salphen-MOF with periodically heterogeneous pore structures. Benefitting from the higher metal density and shorter in-plane metal-metal distance, Cu-Salphen-MOF showcased excellent NO2 sensing performance with good sensitivity, selectivity and reversibility. The current work opens up a new avenue to construct 2D c-MOF directly from nonplanar ligands, which greatly simplifies the synthesis and provides new possibilities for preparing different topological 2D c-MOF based functional materials.  相似文献   

2.
Two-dimensional conductive metal-organic frameworks (2D-c-MOFs) have attracted extensive attention owing to their unique structures and physical-chemical properties. However, the planarly extended structure of 2D-c-MOFs usually limited the accessibility of the active sites. Herein, we designed a triptycene-based 2D vertically conductive MOF (2D-vc-MOF) by coordinating 2,3,6,7,14,15-hexahydroxyltriptycene (HHTC) with Cu2+. The vertically extended 2D-vc-MOF(Cu) possesses a weak interlayer interaction, which leads to a facile exfoliation to the nanosheet. Compared with the classical 2D-c-MOFs with planarly extended 2D structures, 2D-vc-MOF(Cu) exhibits a 100 % increased catalytic activity in terms of turnover number and a two-fold increased selectivity. Density functional theory (DFT) calculations further revealed that higher activity originated from the lower energy barriers of the vertically extended 2D structures during the CO2 reduction reaction process.  相似文献   

3.
Two-dimensional conjugated metal–organic frameworks (2D c-MOFs) are emerging as a unique class of electronic materials. However, 2D c-MOFs with band gaps in the Vis-NIR and high charge carrier mobility are rare. Most of the reported conducting 2D c-MOFs are metallic (i.e. gapless), which largely limits their use in logic devices. Herein, we design a phenanthrotriphenylene-based, D2h-symmetric π-extended ligand ( OHPTP ), and synthesize the first rhombic 2D c-MOF single crystals ( Cu2(OHPTP) ). The continuous rotation electron diffraction (cRED) analysis unveils the orthorhombic crystal structure at the atomic level with a unique slipped AA stacking. The Cu2(OHPTP) is a p-type semiconductor with an indirect band gap of ≈0.50 eV and exhibits high electrical conductivity of 0.10 S cm−1 and high charge carrier mobility of ≈10.0 cm2 V−1 s−1. Theoretical calculations underline the predominant role of the out-of-plane charge transport in this semiquinone-based 2D c-MOF.  相似文献   

4.
2D conductive metal–organic frameworks (2D c-MOFs) feature promising applications as chemiresistive sensors, electrode materials, electrocatalysts, and electronic devices. However, exploration of the spin-polarized transport in this emerging materials and development of the relevant spintronics have not yet been implemented. In this work, layer-by-layer assembly was applied to fabricate highly crystalline and oriented thin films of a 2D c-MOF, Cu3(HHTP)2, (HHTP: 2,3,6,7,10,11-hexahydroxytriphenylene), with tunable thicknesses on the La0.67Sr0.33MnO3 (LSMO) ferromagnetic electrode. The magnetoresistance (MR) of the LSMO/Cu3(HHTP)2/Co organic spin valves (OSVs) reaches up to 25 % at 10 K. The MR can be retained with good film thickness adaptability varied from 30 to 100 nm and also at high temperatures (up to 200 K). This work demonstrates the first potential applications of 2D c-MOFs in spintronics.  相似文献   

5.
Electrochemical proton storage plays an essential role in designing next-generation high-rate energy storage devices, e.g., aqueous batteries. Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are promising electrode materials, but their competitive proton and metal-ion insertion mechanisms remain elusive, and proton storage in COFs is rarely explored. Here, we report a perinone-based poly(benzimidazobenzophenanthroline) (BBL)-ladder-type 2D c-COF for fast proton storage in both a mild aqueous Zn-ion electrolyte and strong acid. We unveil that the discharged C−O groups exhibit largely reduced basicity due to the considerable π-delocalization in perinone, thus affording the 2D c-COF a unique affinity for protons with fast kinetics. As a consequence, the 2D c-COF electrode presents an outstanding rate capability of up to 200 A g−1 (over 2500 C), surpassing the state-of-the-art conjugated polymers, COFs, and metal–organic frameworks. Our work reports the first example of pure proton storage among COFs and highlights the great potential of BBL-ladder-type 2D conjugated polymers in future energy devices.  相似文献   

6.
Construction of porous organic polymers (POPs) with high surface areas, well-defined nanopores, and excellent stability remains extremely challenging because of the unmanageable reaction process. Until now, only a few reported POPs have Brunauer-Emmett-Teller (BET) surface areas (SBET) exceeding 3000 m2 g−1. Herein, we demonstrate a molecular expansion strategy to integrate high surface areas, large nanopore sizes, and outstanding stability into POPs. A series of hyper-crosslinked conjugated polymers ( HCCPs ) with exceptional porosity are synthesized through this strategy. Specially, HCCP-6 and HCCP-11 exhibit the highest surface areas (SBET >3000 m2 g−1) and excellent total pore volumes (up to 3.98 cm3 g−1) among these HCCPs . They present decent total CH4 storage capacities of 491 and 421 mg g−1 at 80 bar and 298 K, respectively. Meanwhile, they are highly stable in harsh environments. The facile and general molecular expansion strategy would lead to improved synthetic routes of POPs for desired functions.  相似文献   

7.
Linear conjugated polymers have attracted significant attention in organic electronics in recent decades. However, despite intrachain π-delocalization, interchain hopping is their transport bottleneck. In contrast, two-dimensional (2D) conjugated polymers, as represented by 2D π-conjugated covalent organic frameworks (2D c-COFs), can provide multiple conjugated strands to enhance the delocalization of charge carriers in space. Herein, we demonstrate the first example of thiophene-based 2D poly(arylene vinylene)s (PAVs, 2DPAV-BDT-BT and 2DPAV-BDT-BP , BDT=benzodithiophene, BT=bithiophene, BP=biphenyl) via Knoevenagel polycondensation. Compared with 2DPAV-BDT-BP , the fully thiophene-based 2DPAV - BDT - BT exhibits enhanced planarity and π-delocalization with a small band gap (1.62 eV) and large electronic band dispersion, as revealed by the optical absorption and density functional calculations. Remarkably, temperature-dependent terahertz spectroscopy discloses a unique band-like transport and outstanding room-temperature charge mobility for 2DPAV-BDT-BT (65 cm2 V−1 s−1), which far exceeds that of the linear PAVs, 2DPAV-BDT-BP , and the reported 2D c-COFs in the powder form. This work highlights the great potential of thiophene-based 2D PAVs as candidates for high-performance opto-electronics.  相似文献   

8.
A theory of the fracture of polymers with network microstructure was developed that was based on the vector, or rigidity percolation (RP) model of Kantor and Webman, in which the modulus, E, is related to the lattice bond fraction p, via E ~ [p ? pc]τ. The Hamiltonian for the lattice was replaced by the strain energy density function of the bulk polymer, U = σ2/2E, where σ is the applied stress and p was expressed in terms of the lattice perfection via the bond density ν, with the entanglement molecular weight, ν = ρ/Me and appropriate measures of crosslink density for rubber, thermosets, and carbon nanotubes. The stored mechanical energy, U, was released by the random fracture of νDo[p ? pc] over stressed hot bonds of energy Do ≈ 330 kJ/mol. The polymer fractured critically when p approached the percolation threshold pc, and the net solution was obtained as σ = (2EνDo [p ? pc])1/2 with a fracture energy, G1c ~ [p ? pc]. The fracture strength of amorphous and semicrystalline polymers in the bulk was well described by, σ = [EDoρ/16 Me]1/2, or σ ≈ 4.6 GPa/Me1/2. Fracture by disentanglement was found to occur in a finite molecular weight range, Mc < M < M*, where M*/Mc ≈ 8, such that the critical draw ratio, λc = (M/Mc)1/2, gave the molecular weight dependence of the fracture as G1c ~ [(M/Mc)1/2 ? 1]2. The critical entanglement molecular weight, Mc, is related to the percolation threshold, pc, via Mc = Me/(1 ? pc). Fracture by bond rupture was in accord with Flory's suggestion, G/G* = [1 ? Mc/M], where G* is the maximum fracture energy. Fracture of an ideal rubber with p = 1 was determined not to occur without strain hardening at λ > 4, such that the maximum stress, σ = E (λ ? 1/λ) = 3.75E. The fracture properties of rubber were found to behave as σ ~ ν, σ ~ E, and G1c ~ ν. For highly crosslinked thermosets, it was predicted that σ ~ (Eν)1/2, σ ~ (X ? Xc)1/2, and G1c ~ ν?1/2, where X is the degree of reaction of the crosslinking groups and Xc defines the gelation point. When applied to carbon nanotubes (SWNT and MWNT) of diameter d and hexagonal bond density ν = j/b2, the nominal stress as a function of diameter is σ(d) = [16 EDo(p ? pc) j/b]1/2/d ≈ 211/d (GPa.nm) and the critical force, Fc(d) ≈ 166 d (nN/nm), in which j = 1.15, b = 0.142 nm, E ≈ 1 Tpa, and Do = 518 kJ/mol. For polymer interfaces with Σ chains per unit area of length L and width XL1/2, G1c is then ~ [p ? pc], where p ~ ΣL/X. The results predicted by the RP fracture model were in good agreement with a considerable body of fracture data for linear polymers, rubbers, thermosets, and carbon nanotubes. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 168–183, 2005  相似文献   

9.
《Journal of Coordination Chemistry》2012,65(16-18):2702-2713
Abstract

Using a triazole carboxylic ligand (H2L = 4-(1H-1,2,4-triazol-1-yl) isophthalic acid), four water-stable lanthanide metal–organic frameworks (Ln(III)-MOFs) (1-Ln, Ln(III) = Tb, Eu, Dy, and Sm), [Ln(L)(HL)(H2O)2], where the deprotonated H2L ligands have two different coordination modes: L2? and HL? [(a): η2μ2χ2, η2μ1χ2; (b): η2μ1χ2], have been synthesized by solvothermal reaction and characterized by elemental analysis, FT-IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Single-crystal X-ray diffraction analyses show that Ln(III)-MOFs are isostructural with 2D-layered structures with uncoordinated carboxylic and triazole groups. The luminescent properties of 1-Tb in aqueous solution containing different cationic solutions and small organic solvents have been explored under ultraviolet irradiation at room temperature. The high quenching constant KSV values and low detection limits indicate that 1-Tb exhibits extremely high detection sensitivity and selectivity toward Fe3+ ions and nitrobenzene; 1-Tb can keep its original network and be reused after the sensing experiments, which provide us with an optical material for detecting Fe3+ ions and nitrobenzene. Magnetic studies show that antiferromagnetic exchange interactions exist between Dy(III) ions in 1-Dy.  相似文献   

10.
在溶剂热条件下合成了3个新型三维微孔同构异核金属有机骨架Ln (Na)-MOFs:{[LnNa (BDT)(H2O)3]·2H2O}n(Ln=Tb (1)、Dy (2)、Ho (3),H4BDT=3,5-二(3'',5''-二羧基苯基)-1H-1,2,4-三唑),并通过单晶X射线衍射、元素分析、热重分析和粉末X射线衍射技术对其进行表征。结构分析表明,Ln (Na)-MOFs是具有相同的异核双金属单元的三维骨架结构。荧光研究表明,Tb (Na)-MOF (1)可以荧光传感检测水中Fe3+、Cr2O72-以及乙醛分子,具有较高的灵敏度和选择性,也可用于水中邻苯二酚的电化学检测。  相似文献   

11.
Three new coordination compounds, [Pb(HBDC‐I4)2(DMF)4]( 1 ) and [M(BDC‐I4)(MeOH)2(DMF)2]n (M = ZnII for 2 and MnII for ( 3 ) (H2BDC‐I4 = 2, 3, 5, 6‐tetraiodo‐1, 4‐benzenedicarboxylic acid), were synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, and X‐ray single crystal structure analysis. Single‐crystal X‐ray diffraction reveals that 1 crystallizes in the monoclinic space group C2/c and has a discrete mononuclear structure, which is further assembled to form a two‐dimensional (2D) layer through intermolecular O–H ··· O and C–H ··· O hydrogen bonding interactions. The isostructural compounds 2 and 3 crystallize in the space group P21/c and have similar one‐dimensional (1D) chain structures that are extended into three‐dimensional (3D) supramolecular networks by interchain C–H ··· π interactions. The PbII and ZnII complexes 1 and 2 display similar emissions at 472 nm in the solid state, which essentially are intraligand transitions.  相似文献   

12.
Data on the viscosity of poly(vinyl acetate) (PVOAc) and its concentrated solutions in diethyl phthalate (DEP) and cetyl alcohol (CeOH) are examined over the molecular weight range 8 × 103 < M < 1.3 × 106, the range 0.15 < φ < 1.0 of the volume fraction φ of polymer, the temperature range 308 to 430°K for PVOAc and its solutions in DEP, and at 396°K in CeOH. The latter is the θ temperature for dilute solutions of PVOAc in CeOH. The data are analyzed with the relation η = KXc(αφM/Mc)a exp[1/β(TT0)], where a is 1 or 3.4 for αφM less than or greater than a constant Mc, respectively, and XC, is a constant. The expansion factor αφ of the chain dimension is found to be essentially unity for φ > ca. 0.25, increasing with decreasing φ for smaller φ. Both β and T0 depend on φ, and T0 also depends on M at low M.  相似文献   

13.
A nickel hydroxide (Ni(OH)2)/3D‐graphene composite is used as monolithic free‐standing electrode for enzymeless electrochemical detection of glucose. Ni(OH)2 nanoflakes are synthesized by using a simple solution growth procedure on 3D‐graphene foam which was grown by chemical vapor deposition (CVD). The pore structure of 3D‐graphene allows easy access to glucose with high surface area, which leads to glucose detection with an ultrahigh sensitivity of 3.49 mA mM?1 cm?2 and a significant lower detection limit up to 24 nM. Cyclic voltammetry (CV) and potentionstatic mode is used for non‐enzymatic glucose sensing. The impedance and effective surface area have been studied well. The high sensitivity, low detection limit and simple configuration of Ni(OH)2/three dimensional (3D)‐graphene composite electrodes can evoke its industrial application in glucose sensing devices.  相似文献   

14.
The current study focuses on the synthesis and sorption properties of two mixed oxides of iron and silicon prepared by physical mixing (M1) and sequential precipitation methods (M2). Both the mixed oxides were synthesized from equimolar ratios of Fe(OH)3 and SiO2 and characterized for surface area, EDX, XRD and PZC. The surface area, micropore volume and average pore width of the oxide M1 were higher as compared to the oxide M2. However, potentiometric titrations revealed that mixed oxide synthesized by this method had a very high capacity towards Cd2+ ions as compared to the mixed oxide M1. Sorption of Cd2+ ions at pH 5 on mixed oxide, M2 was found to increase with temperature in the range 288 to 318 K. Langmuir equation was found applicable to the sorption data with R2>0.99. Entropy (ΔS?), enthalpy (ΔH?) and free energy changes (ΔG?) were calculated which revealed the process to be endothermic and spontaneous in nature.  相似文献   

15.
Various [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐thiones were synthesized in high yields by treatment of the corresponding [5,6]pyrano[2,3‐c]pyrazol‐4(1H)‐ones with Lawesson's reagent. Detailed NMR spectroscopic studies were undertaken of the title compounds. Complete and unambiguous assignment of chemical shifts (1H, 13C, 15N) and coupling constants (1H,1H; 13C,1H) was achieved by the combined application of various one‐ and two‐dimensional (1D and 2D) NMR spectroscopic techniques. Unequivocal mapping of most 13C,1H spin coupling constants is accomplished by 2D (δ, J) long‐range INEPT spectra with selective excitation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Isotypic Borophosphates MII(C2H10N2)[B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn): Compounds containing Tetrahedral Layers The isotypic compounds MII(C2H10N2) · [B2P3O12(OH)] (MII = Mg, Mn, Fe, Ni, Cu, Zn) were prepared under hydrothermal conditions (T = 170 °C) from mixtures of the metal chloride (chloride hydrate, resp.), Ethylenediamine, H3BO3 and H3PO4. The orthorhombic crystal structures (Pbca, No. 61, Z = 8) were determined by X‐ray single crystal methods (Mg(C2H10N2)[B2P3O12(OH)]: a = 936.81(2) pm, b = 1221.86(3) pm, c = 2089.28(5) pm) and Rietveld‐methods (MII = Mn: a = 931.91(4) pm, b = 1234.26(4) pm, c = 2129.75(7) pm, Fe: a = 935.1(3) pm, b = 1224.8(3) pm, c = 2088.0(6) pm, Ni: a = 939.99(3) pm, b = 1221.29(3) pm, c = 2074.05(7) pm, Cu: a = 941.38(3) pm, b = 1198.02(3) pm, c = 2110.01(6) pm, Zn: a = 935.06(2) pm, b = 1221.33(2) pm, c = 2094.39(4) pm), respectively. The anionic part of the structure contains tetrahedral layers, consisting of three‐ and nine‐membered rings. The MII‐ions are in a distorted octahedral or tetragonal‐bipyramidal [4 + 2] (copper) coordination formed by oxygen functions of the tetrahedral layers. The resulting three‐dimensional structure contains channels running along [010]. Protonated Ethylenediamine ions are fixed within the channels by hydrogen bonds.  相似文献   

17.
A family of magnetic metal–organic frameworks, (Ph3PMe)2[M2(TCNQ)3] {M=Fe2+, Co2+, Ni2+ and Zn2+} have been prepared and structurally characterized. The honeycomb‐like “layers” consist of MII ions doubly bridged with dinitrilomethane moieties of two 7,7,8,8‐tetracyanoquinodimethane (TCNQ) dianions which are further connected through phenyl rings to form a 3D dianionic framework [M2TCNQ3]2? with Ph3PMe+ cations filling cavities that run along the c axis. Studies of the magnetic coupling through the TCNQ dianion in these structures revealed that it can promote long‐range magnetic ordering despite the long coupling pathway.  相似文献   

18.
We report the synthesis, crystal structures, thermal and magnetic characterizations of a family of metal‐organic frameworks adopting the niccolite (NiAs) structure, [dmenH22+][M2(HCOO)62−] (dmen=N,N′‐dimethylethylenediamine; M=divalent Mn, 1Mn ; Fe, 2Fe ; Co, 3Co ; Ni, 4Ni ; Cu, 5Cu ; and Zn, 6Zn ). The compounds could be synthesized by either a diffusion method or directly mixing reactants in methanol or methanol–water mixed solvents. The five members, 1Mn , 2Fe , 3Co , 4Ni , and 6Zn are isostructural and crystallize in the trigonal space group P 1c, while 5Cu crystallizes in C2/c. In the structures, the octahedrally coordinated metal ions are connected by anti–anti formate bridges, thus forming the anionic NiAs‐type frameworks of [M2(HCOO)62−], with dmenH22+ located in the cavities of the frameworks. Owing to the Jahn–Teller effect of the Cu2+ ion, the 3D framework of 5Cu consists of zigzag Cu‐formate chains with Cu OCHO Cu connections through short basal Cu O bonds, further linked by the long axial Cu O bonds. 6Zn exhibits a phase transition probably as a result of the order–disorder transition of the dmenH22+ cation around 300 K, confirmed by differential scanning calorimetry and single crystal X‐ray diffraction patterns under different temperatures. Magnetic investigation reveals that the four magnetic members, 1Mn , 2Fe , 3Co , and 4Ni , display spin‐canted antiferromagnetism, with a Néel temperature of 8.6 K, 19.8 K, 16.4 K, and 33.7 K, respectively. The Mn, Fe, and Ni members show spin‐flop transitions below 50 kOe. 2Fe possesses a large hysteresis loop with a large coercive field of 10.8 kOe. The Cu member, 5Cu , shows overall antiferromagnetism (both inter‐ and intra‐chains) with low‐dimensional characteristics.  相似文献   

19.
Sesquialkoxides of Gallium and Indium Treatment of GaMe3 with one equivalent of HOcHex in toluene at 20 °C leads to [Me2GaOcHex]2 ( 4 ) under evolution of methane. The reaction of InMe3 with two equivalents of HOcHex leads under similar conditions not to [MeIn(OcHex)2]n but to the sesquialkoxide [In{Me2In(OcHex)2}3] ( 5 ). 5 can be described also as [{Me2InOcHex)}2{MeIn(OcHex)2}2]. The use of an excess of cyclohexanol in boiling toluene gives the same result. Under these reflux conditions, the reaction of GaMe3 with an excess of PhCH2OH leads exclusively to another type of sequialkoxides, [Ga{MeGa(OCH2Ph)3}3] ( 6 ). 4 — 6 were characterized by NMR, vibrational and MS spectra, as well as by X‐ray structure determinations. According to this, 4 forms centrosymmetrical and therefore planar Ga2O2 four‐membered rings. 5 and 6 possess basically the same structural motif, central M3+ ion ( 5 : In3+; 6 : Ga3+) coordinated by three metalate units ( 5 : [Me2In(OcHex)2]; 6 : [MeGa(OCH2Ph)3]). The central M3+ ions have always coordination number (CN) six while the three surrounding metal ions possess CN 4. Because of the spectroscopic findings 6 must exist in two isomers (1:1). The C3‐symmetrical isomer C3‐ 6 was characterized by X‐ray analysis, while the isomer C1‐ 6 could by described mainly by the complex NMR data.  相似文献   

20.
The microporous metal–organic framework (MMOF) Zn4O(L1)2 ? 9 DMF ? 9 H2O ( 1‐H ) and its functionalized derivatives Zn4O(L1‐CH3)2 ? 9 DMF ? 9 H2O ( 2‐CH3 ) and Zn4O(L1‐Cl)2 ? 9 DMF ? 9 H2O ( 3‐Cl ) have been synthesized and characterized (H3L1=4‐[N,N‐bis(4‐methylbenzoic acid)amino]benzoic acid, H3L1‐CH3=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐methylbenzoic acid, H3L1‐Cl=4‐[N,N‐bis(4‐methylbenzoic acid)amino]‐2‐chlorobenzoic acid). Single‐crystal X‐ray diffraction analyses confirmed that the two functionalized MMOFs are isostructural to their parent MMOF, and are twofold interpenetrated three‐dimensional (3D) microporous frameworks. All of the samples possess enduring porosity with Langmuir surface areas over 1950 cm2 g?1. Their pore volumes and surface areas decrease in the order 1‐H > 2‐CH3 > 3‐Cl . Gas‐adsorption studies show that the H2 uptakes of these samples are among the highest of the MMOFs (2.37 wt % for 3‐Cl at 77 K and 1 bar), although their structures are interpenetrating. Furthermore, this work reveals that the adsorbate–adsorbent interaction plays a more important role in the gas‐adsorption properties of these samples at low pressure, whereas the effects of the pore volumes and surface areas dominate the gas‐adsorption properties at high pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号