首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Developing adsorptive separation processes based on C2H6-selective sorbents to replace energy-intensive cryogenic distillation is a promising alternative for C2H4 purification from C2H4/C2H6 mixtures, which however remains challenging. During our studies on two isostructural metal–organic frameworks ( Ni-MOF 1 and Ni-MOF 2 ), we found that Ni-MOF 2 exhibited significantly higher performance for C2H6/C2H4 separation than Ni-MOF-1 , as clearly established by gas sorption isotherms and breakthrough experiments. Density-Functional Theory (DFT) studies showed that the unblocked unique aromatic pore surfaces within Ni-MOF 2 induce more and stronger C−H⋅⋅⋅π with C2H6 over C2H4 while the suitable pore spaces enforce its high C2H6 uptake capacity, featuring Ni-MOF 2 as one of the best porous materials for this very important gas separation. It generates 12 L kg−1 of polymer-grade C2H4 product from equimolar C2H6/C2H4 mixtures at ambient conditions.  相似文献   

2.
The separation of C2H2 from C2H4 is one of the most challenging tasks due to the similarity of their physical properties. In addition, green synthetic protocol and adsorbent's stability are also the major concerns during the separation. Herein, under hydrothermal green synthesis conditions, an ultrastable ultramicroporous Zn-MOF was designed and synthesized with a high yield. The pore diameter of the Zn-MOF is 3.6 Å, which lies in between the diameters of C2H2 (3.3 Å) and C2H4 (4.2 Å) molecules, leading to an efficient separation of the C2H2/C2H4 mixtures by the sieving effect. The practical separation performance of C2H2/C2H4 was confirmed by the dynamic breakthrough experiments. Moreover, the high stability enables the adsorption capacity of the Zn-MOF to C2H2, which can be maintained under a wide range of pH (1–13). Molecular simulations were also performed to identify the different C2H2- and C2H4-binding sites in Zn-MOF.  相似文献   

3.
In the present paper, the catalytic dehydrogenation of C2H6 to C2H4 under non-oxidative conditions was investigated in a fixed-bed micro-reactor under ambient pressure at 823 - 923 K. The 6Cr/g-Al2O3 catalyst was found to be the best catalyst among the g-Al2O3, SiO2, MCM41, MgO and Si-2 supported chromium oxide catalysts. The features of the 6Cr/g-Al2O3 catalyst for the reaction could be listed as follows: (1) At 823 - 923 K, the C2H4 selectivity of 92.5-78.6% at a C2H6 conversion of 9.5-29.8% could be obtained. (2) The catalyst had the good regeneration performance, i.e., could be regenerated by air repeatedly. (3) The main products were C2H4, CH4, H2 and coke. No carbon oxides were identified.  相似文献   

4.
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5 Å and a surface area of 289 m2 g−1. This COF possesses N−O paired groups which cooperatively interact with C2H2 instead of C2H4. TP-IQD nanosheets of ≈10 μm in width and ≈4 nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2H2 permeability and C2H2/C2H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.  相似文献   

5.
Synthesis and Characterization of the Fullerene Co-Crystals C60 · 12 C6H12, C70 · 12 C6H12, C60 · 12 CCl4, C60 · 2CHBr3, C60 · 2CHCl3, C60 · 2H2CCl2 By crystallization of fullerenes from non-polar solvents (C6H12, CCl4, CHBr3, CHCl3, H2CCl2) compounds of the following compositions were obtained: C60 · 12C6H12, C70 · 12C6H12, C60 · 12CCl4, C60 · 2CHCl3, C60 · 2CHBr3 and C60 · 2H2CCl2. Lattice parameters have been determined by X-ray diffraction of powder samples; according to single-crystal examinations on C60 · 12C6H12, C60 · 12CCl4 and C60 · 2CHBr3 the fullerene is orientationally disordered. C60 · 12C6H12, cubic, a = 28.167(1) Å; C70 · 12C6H12, cubic, a = 28.608(2) Å; C60 · 12CCl4, cubic, a = 27.42(1) Å; C60 · 2CHBr3, hexagonal, a = 10.212(1), c = 10.209(1) Å; C60 · 2CHCl3, hexagonal, a = 10.08(1), c = 10.11(2) Å; C60 · 2H2CCl2, tetragonal, a = 16.400(1) Å, c = 11.645(7) Å.  相似文献   

6.
Designing porous materials for C2H2 purification and safe storage is essential research for industrial utilization. We emphatically regulate the metal-alkyne interaction of PdII and PtII on C2H2 sorption and C2H2/CO2 separation in two isostructural NbO metal–organic frameworks (MOFs), Pd/Cu-PDA and Pt/Cu-PDA . The experimental investigations and systematic theoretical calculations reveal that PdII in Pd/Cu-PDA undergoes spontaneous chemical reaction with C2H2, leading to irreversible structural collapse and loss of C2H2/CO2 sorption and separation. Contrarily, PtII in Pt/Cu-PDA shows strong di-σ bond interaction with C2H2 to form specific π-complexation, contributing to high C2H2 capture (28.7 cm3 g−1 at 0.01 bar and 153 cm3 g−1 at 1 bar). The reusable Pt/Cu-PDA efficiently separates C2H2 from C2H2/CO2 mixtures with satisfying selectivity and C2H2 capacity (37 min g−1). This research provides valuable insight into designing high-performance MOFs for gas sorption and separation.  相似文献   

7.
The reactivity of Mo and Mo2 with ammonia, ethene, and propene molecules has been investigated by using Density Functional Theory. Different gradient‐corrected and hybrid exchange‐correlation functionals have been employed. Coordination modes, binding energies, geometrical structures, vibrational frequencies have been computed and compared with the available experimental counterparts. The results obtained show that the molybdenum atom is able to react with C2H4 and C3H6, and binds weakly with NH3. The dimer Mo2 gives a stable complexes with ammonia, ethene, and propene. For the Mo2NH3 complex, all the employed levels of theory give binding energies in good agreement with the experimental value, while in the case of the MoC2H4 system, the use of model core potentials coupled with gradient‐corrected exchange‐correlation functionals overestimates the binding energies. For MoC3H6, Mo2C2H4, and Mo2C3H6 we predict a binding energy of 14–15, 20–24, and 18–20 kcal/mol, respectively. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1557–1564, 2001  相似文献   

8.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

9.
The reaction of H radical with C2H5CN has been studied using various quantum chemistry methods. The geometries were optimized at the B3LYP/6‐311+G(d,p) and B3LYP/6‐311++G(2d,2p) levels. The single‐point energies were calculated using G3 and BMC‐CCSD methods based on B3LYP/6‐311++G(2d,2p) geometries. Four mechanisms were investigated, namely, hydrogen abstraction, C‐addition/elimination, N‐addition/elimination and substitution. The kinetics of this reaction were studied using the transition state theory and multichannel Rice‐Ramsperger‐Kassel‐Marcus methodologies over a wide temperature range of 200–3000 K. The calculated results indicate that C‐addition/elimination channel is the most feasible over the whole temperature range. The deactivation of initial adduct C2H5CHN is dominant at lower temperature with bath gas H2 of 760 Torr; whereas C2H5+HCN is the dominant product at higher temperature. Our calculated rate constants are in good agreement with the available experimental data. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

10.
Low-concentration ethane capture is crucial for environmental protection and natural gas purification. The ideal physisorbent with strong C2H6 interaction and large C2H6 uptake at low-concentration level has rarely been reported, due to the large pKa value and small quadrupole moment of C2H6. Herein, we demonstrate the perfectly size matching between the ultramicropore (pore size of 4.6 Å) and ethane (kinetic diameter of 4.4 Å) in a nickel pyridine-4-carboxylate metal–organic framework (IISERP-MOF 2 ), which enables the record-breaking performance for low concentration C2H6 capture. IISERP-MOF 2 exhibits the large C2H6 adsorption enthalpy of 56.7 kJ/mol, and record-high C2H6 uptake at low pressure of 0.01–0.1 bar and 298 K (1.8 mmol/g at 0.01 bar). Molecule simulations and C2H6-loading crystal structure analysis revealed that the maximized interaction sites in IISERP-MOF 2 with ethane molecule originates the strong C2H6 adsorption. The dynamic breakthrough experiments for gas mixtures of C2H6/N2(1/999, v/v) and C2H6/CH4 (5/95, v/v) proved the excellent low-concentration C2H6 capture performance.  相似文献   

11.
A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol−1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.  相似文献   

12.
Hydrogen-bonded organic frameworks (HOFs) show great potential in energy-saving C2H6/C2H4 separation, but there are few examples of one-step acquisition of C2H4 from C2H6/C2H4 because it is still difficult to achieve the reverse-order adsorption of C2H6 and C2H4. In this work, we boost the C2H6/C2H4 separation performance in two graphene-sheet-like HOFs by tuning pore polarization. Upon heating, an in situ solid phase transformation can be observed from HOF-NBDA(DMA) (DMA=dimethylamine cation) to HOF-NBDA , accompanied with transformation of the electronegative skeleton into neutral one. As a result, the pore surface of HOF-NBDA has become nonpolar, which is beneficial to selectively adsorbing C2H6. The difference in the capacities for C2H6 and C2H4 is 23.4 cm3 g−1 for HOF-NBDA , and the C2H6/C2H4 uptake ratio is 136 %, which are much higher than those for HOF-NBDA(DMA) (5.0 cm3 g−1 and 108 % respectively). Practical breakthrough experiments demonstrate HOF-NBDA could produce polymer-grade C2H4 from C2H6/C2H4 (1/99, v/v) mixture with a high productivity of 29.2 L kg−1 at 298 K, which is about five times as high as HOF-NBDA(DMA) (5.4 L kg−1). In addition, in situ breakthrough experiments and theoretical calculations indicate the pore surface of HOF-NBDA is beneficial to preferentially capture C2H6 and thus boosts selective separation of C2H6/C2H4.  相似文献   

13.
Single crystals of Sr[B(C6H5O7)2](H2O)4 · 3H2O, a new borate‐citrate material, were grown with sizes up to 8 × 6 × 2 mm by slow evaporation of water at room temperature. The structure of Sr[B(C6H5O7)2](H2O)4 · 3H2O was determined by single‐crystal X‐ray diffraction. It crystallizes in the monoclinic space group P21/c, with a = 11.363(3) Å, b = 18.829(4) Å, c = 11.976(3) Å, β = 110.736(3)°, and Z = 4. The SrO8 dodecahedra, BO4 tetrahedra and citrate groups are linked together to form chains. The compound was characterized by IR and UV/Vis/NIR transmittance spectroscopy as well as thermal analysis.  相似文献   

14.
Owing to a stable and porous cage structure, natural gas hydrates can store abundant methane and serve as a potentially natural gas resource. However, the microscopic mechanism of how hydrate crystalline grows has not been fully explored, especially for the structure containing different guest molecules. Hence, we adopt density functional theory (DFT) to investigate the fusion process of structure I hydrates with CH4/C2H6 guest molecules from mono-cages to triple-cages. We find that the volume of guest molecules affects the stabilities of large (51262, L) and small (512, s) cages, which are prone to capture C2H6 and CH4, respectively. Mixed double cages (small cage and large cage) with the mixed guest molecules have the highest stability and fusion energy. The triangular triple cages exhibit superior stability because of the three shared faces, and the triangular mixed triple cages (large-small-large) structure with the mixed guest molecules shows the highest stability and fusion energy in the triple-cage fusion process. These results can provide theoretical insights into the growth mechanism of hydrates with other mono/mixed guest molecules for further development and application of these substances.  相似文献   

15.
Three H2@C58Hx, six CO@C58Hx, and six LiH@C58Hx (x = 0 and 18) complexes were optimized using B3LYP/6‐31G* method. The results show that both C58 and C58H18 destabilize nonpolar H2 and weakly polar CO, and stabilize strongly polar LiH inside their cages. Three H2@C58Hx (x = 0 and 18) complexes are nearly equivalent in energy, and CO orients the longest direction of cage because of spatial repulsion between them in the most stable CO@C58Hx (x = 0 and 18) isomers. Orientation of LiH inside C58Hx (x = 0 and 18) cages is determined by dipole‐induced dipole attractive interaction between them, and this attraction is especially significant in LiH@C58H18 complexes. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

16.
The mechanisms for the reaction of C2H5S with NO2 are investigated at the QCISD(T)/6‐311++G(d, p)//B3LYP/6‐311++G(d, p) level on both single and triple potential energy surfaces. The geometries, vibrational frequencies and zero‐point energy (ZPE) corrections of all stationary points involved in the title reaction are calculated at the B3LYP/6‐311++G(d, p) level. The results show that the reaction is more predominant on the single potential energy surface, while it is negligible on the triple potential energy surface. Without barrier height in the whole process, the major channel is R → C2H5SONO (IM1 and IM2) → P1 (C2H5SO+NO). With much heat released in the formation of C2H5SNO2 (IM3) and the transition state involved in the subsequent step more stable than reactants, P4 (CH3CHS + t‐HONO) is subdominant product energetically. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

17.
A detailed investigation has been performed at the QCISD(T)/6‐311++G(d,p)//B3LYP/6‐311+G(d,p) level for the reaction of NCO with C2H5 by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable on the singlet PES than on the triplet PES. On the singlet PES, the initial addition processes are barrierless and release lots of energy. The dominant channel occurs via the fragmentations of the initial adduct C2H5NCO and C2H5OCN to form C2H4 + HNCO and HOCN, respectively. With higher barrier heights, other products such as CH4 + HNC + CO, CH3CHNH + CO, CH3CH + HNCO, and CH3CN + H2 + CO are less competitive. On the triplet PES, the entrance reactions surpass significant barriers; therefore, it could be negligible at the normal atmospheric condition. However, the most feasible channel on the triplet PES is the direct hydrogen abstraction channel to form CH2CH2 + HNCO. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

18.
C2/C1 hydrocarbon separation is an important industrial process that relies on energy-intensive cryogenic distillation methods. The use of porous adsorbents to selectively separate these gases is a viable alternative. Highly stable covalent triazine frameworks (urea-CTFs) have been synthesized using 1,3-bis(4-cyanophenyl)urea. Urea-CTFs exhibited gas uptakes of C2H2 (3.86 mmol/g) and C2H4 (2.92 mmol/g) at 273 K and 1 bar and is selective over CH4. Breakthrough simulations show the potential of urea-CTFs for C2/C1 separation.  相似文献   

19.
A dual temperature- and light-responsive C2H2/C2H4 separation switch in a diarylethene metal–organic framework (MOF) is presented. At 195 K and 100 kPa this MOF shows ultrahigh C2H2/C2H4 selectivity of 47.1, which is almost 21.4 times larger than the corresponding value of 2.2 at 293 K and 100 kPa, or 15.7 times larger than the value of 3.0 for the material under UV at 195 K and 100 kPa. The origin of this unique control in C2H2/C2H4 selectivity, as unveiled by density functional calculations, is due to a guest discriminatory gate-opening effect from the diarylethene unit.  相似文献   

20.
Energy differences, ΔXS‐t (X = E, H and G) (ΔXS‐t = X(singlet)‐X(triplet)) between singlet (s) and triplet (t) states are calculated at B3LYP/6‐311++G (3df,2p). The DFT calculations show that the triplet state of C4H4C is a ground state with planar conformer respect to its corresponding nonplanar singlet state. Both singlet and triplet states of C4H4M (M = Si, Ge, Sn and Pb) have a planar conformer with the singlet ground state. Four isodesmic reactions are presented for determining the stability energies, SE. NICS calculations are carried out for C4H4M to determine the aromatic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号