首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two ternary metal chalcogenides, Ba2In2Q5 (Q = S, Se) were successfully synthesized by solid‐state reactions. They are isostructural and crystallize in the orthorhombic space group Pbca (no. 61). Both of them have a similar three‐dimensional (3D) framework structure, which is composed of [InQ4] (Q = S, Se) tetrahedra that are alternatingly connected on layer in the ab plane, with Ba2+ cations arranged between In–S or In–Se layers for electric charge balance. The measured Raman and IR spectra show that title compounds have broad transparency range up to 20 μm. From the UV/Vis/NIR diffuse reflectance spectra, it can be seen that the bandgaps of Ba2In2S5 and Ba2In2S5 are 2.47 eV and 2.12 eV, which are larger than these of the calculation values (Ba2In2S5, 2.362 eV and Ba2In2Se5, 1.908 eV), respectively. The calculated partial densities of states indicate that the bandgaps are determined by the interaction of S‐3p and In‐5s (Ba2In2S5) or Se‐4p and In‐5s (Ba2In2Se5), respectively. The calculated birefringences (Δn) are about 0.03 (Ba2In2S5) and 0.05 (Ba2In2Se5) as the wavelength above 1 μm, respectively.  相似文献   

2.
The efficient utilization of solar energy for photoelectrocatalytic (PEC) water splitting is a feasible solution for developing clean energy and alleviating environmental issues. However, as the core of PEC technology, the existing photoanode catalysts have disadvantages such as poor photoelectrocatalytic conversion efficiency, low conductivity of photogenerated carriers, and instability. Here, we report the ultrathin two-dimensional sandwich-like (SW) heterojunction of In2Se3/In2S3/In2Se3 (SW In2S3@In2Se3) for the first time for PEC water splitting. Our findings identify the efficient separation of electrons and holes by constructing SW In2S3@In2Se3 heterojunction. The in situ synthesis of ultrathin nanosheet arrays by using surface substitution of Se atom to epitaxially grow cell In2Se3 maximizes the contact area of heterogeneous interface and accelerates the transmission of charge carrier. Benefitting from the unique structure and composition characteristic, SW In2S3@In2Se3 displays excellent performance in PEC water splitting. The photocurrent density of SW In2S3@In2Se3 reaches 8.43 mA cm−2 at 1.23 VRHE. Compared with In2S3, the SW In2S3@In2Se3 photoanode has nearly 12 times higher PEC performance, which represents the best performance among the In2S3-based photoanode heterojunction reported so far. The evolution rate of O2 reaches 78.8 μmol cm−2 h−1, and the photocurrent has no apparent variety within 24 h.  相似文献   

3.
《化学:亚洲杂志》2017,12(4):453-458
Two new non‐centrosymmetric polar quaternary selenides, namely, RbZn4In5Se12 and CsZn4In5Se12, have been synthesized and structurally characterized. They exhibit a 3D diamond‐like framework (DLF) consisting of corner‐shared MSe4 (M=Zn/In) tetrahedra, in which the A+ ions are located. Both compounds are thermally stable up to 1300 K and exhibit large transmittance in the infrared region (0.65–25 μm) with measured optical band gaps of 2.06 eV for RbZn4In5Se12 and 2.11 eV for CsZn4In5Se12. Inspiringly, they exhibit a good balance between strong second harmonic generation (SHG) efficiency (3.9 and 3.5×AgGaS2) and high laser‐induced damage thresholds (13.0×AgGaS2). Theoretical calculations based on density functional theory (DFT) methods confirm that such strong SHG responses originate from the 3D DLF structure.  相似文献   

4.
A new organically templated indium selenide, [C6H16N2][In2Se3(Se2)], has been prepared hydrothermally from the reaction of indium, selenium and trans-1,4-diaminocyclohexane in water at 170 °C. This material was characterised by single-crystal and powder X-ray diffraction, thermogravimetric analysis, UV-vis diffuse reflectance spectroscopy, FT-IR and elemental analysis. The compound crystallises in the monoclinic space group C2/c (a=12.0221(16) Å, b=11.2498(15) Å, c=12.8470(17) Å, β=110.514(6)°). The crystal structure of [C6H16N2][In2Se3(Se2)] contains anionic chains of stoichiometry [In2Se3(Se2)]2−, which are aligned parallel to the [1 0 1] direction, and separated by diprotonated trans-1,4-diaminocyclohexane cations. The [In2Se3(Se2)]2− chains, which consist of alternating four-membered [In2Se2] and five-membered [In2Se3] rings, contain perselenide (Se2)2− units. UV-vis diffuse reflectance spectroscopy indicates that [C6H16N2][In2Se3(Se2)] has a band gap of 2.23(1) eV.  相似文献   

5.
Syngas (CO/H2) is a feedstock for the production of a variety of valuable chemicals and liquid fuels, and CO2 electrochemical reduction to syngas is very promising. However, the production of syngas with high efficiency is difficult. Herein, we show that defective indium selenide synthesized by an electrosynthesis method on carbon paper (γ‐In2Se3/CP) is an extremely efficient electrocatalyst for this reaction. CO and H2 were the only products and the CO/H2 ratio could be tuned in a wide range by changing the applied potential or the composition of the electrolyte. In particular, using nanoflower‐like γ‐In2Se3/CP (F‐γ‐In2Se3/CP) as the electrode, the current density could be as high as 90.1 mA cm?2 at a CO/H2 ratio of 1:1. In addition, the Faradaic efficiency of CO could reach 96.5 % with a current density of 55.3 mA cm?2 at a very low overpotential of 220 mV. The outstanding electrocatalytic performance of F‐γ‐In2Se3/CP can be attributed to its defect‐rich 3D structure and good contact with the CP substrate.  相似文献   

6.
Crystals of antimony-doped In2Se3 were grown by the Bridgeman method. This compound, whose composition is In1.8Sb0.2Se3, appears to be isostructural with In1.9As0.1Se3. The refined unit cell parameters are a = 3.97(1), c = 18.87(1) Å. Orthorhombic crystals of InSbSe3 were grown from an isothermal melt. The refined unit cell parameters are a = 9.43(1), b = 14.02(5), and c = 3.96(1) Å. These parameters agree with those determined for α-InSbSe3 by other studies. The observed densities measured by a hydrostatic technique are 5.98(3) g/cm3 for In1.8Sb0.2Se3 and 6.07(2) g/cm3 for InSbSe3. The room temperature dc resistivity for In1.8Sb0.2Se3 has been found to be 4.4 × 104 Ω-cm, whereas that of InSbSe3 has been found to be 15.2(1) Ω-cm. A resistivity versus temperature study has beenn carried out for InSbSe3 between 230 and 400°K. Optical studies indicate that In1.8Sb0.2Se3 is an n-type semiconductor with a band gap of 1.1 eV and InSbSe3 is a p-type semiconductor with a band gap of 0.92 eV.  相似文献   

7.
NiS (nickel sulfide)–In2O3 (indium oxide) nanostructures and NiS–In2O3 decorated on graphene oxide (GO) were demonstrated by ultrasonic/hydrothermal method. The structural study demonstrates the preparation of bixbyite and hexagonal phase of In2O3 and NiS for all of the synthesized catalysts. The band gap of the synthesized catalyst was determined to be in the range of 2.30–3.00 eV. A morphological evaluation by field emission scanning electron microscopy of NiS–In2O3 decorated on graphene oxide shows support for the NiS–In2O3 on the graphene oxide layer. Different test parameters were performed to study the phase and morphology. The particle sizes of the In2O3, NiS–In2O3 and NiS–In2O3/GO nanocomposites were 56.0, 62.0 and 66.0 nm, respectively. The photocatalytic performance of NiS–In2O3/GO nanocomposites was examined for the degradation of methylene blue dye under a UV lamp. The prepared sample shows 98.25% photocatalytic degradation within 40 min and at pH 9. With the presence the NiS and GO, the photo-degradation capacities of In2O3 and NiS–In2O3 are improved owing to the low band gap being calculated in UV–vis DRS analysis. The high ratio of NiS causes the highest photocatalytic properties of NiS–In2O3 nanocomposites owing to the enhancement of charge separation efficiency and generation of hydroxyl radicals. This study presents a facile and low-cost method to prepare highly active NiS–In2O3/GO nanocomposites. The antibacterial data indicate the significant properties of NiS–In2O3/GO nanocomposites for this study.  相似文献   

8.
采用循环伏安法(CV)对离子液体Reline中三元CuCl2+InCl3+SeCl4体系和四元CuCl2+InCl3+GaCl3+SeCl4体系的电化学行为进行了研究。研究表明,In3+并入三元CIS(Cu-In-Se)薄膜体系和Ga3+并入四元CIGS(Cu-In-Ga-Se)薄膜体系均有两种途径:一是发生共沉积,二是直接还原。利用电感耦合等离子体发射光谱(ICP)和扫描电镜(SEM)对沉积电势、镀液温度和主盐浓度对CIGS薄膜组成、镀层表面形貌的影响进行了测试,结果表明通过工艺参数的选择可以控制Ga/(Ga+In)和CIGS薄膜组成并得到化学计量比为Cu1.00In0.78Ga0.27Se2.13的薄膜。  相似文献   

9.
Quaternary System ZnSe - Cr2Se3 - In2Se3 The section Zn1-xIn0.667xCr2Se4 and ZnCr2-yInySe4 as well as some samples of compositions outside these joins of the quaternary system ZnSe Cr2Se3 - In2Se3 were studied with the help of X-ray Guinier photographs of quenched samples. Whereas no detectable amounts of chromium can be incorporated into ZnIn2Se4 of the thiogallate structure (MnIn2Te4 type) in the case of the spinel ZnCr2Se4 (a = 1050.0 pm) up to 21 mol % of chromium and up to 20 mol % of zinc can be substituted by indium. However, spinel type solid solutions with larger indium content (up to a = 1076 pm) are formed by coincident substitution of both zinc and chromium corresponding to Zn1-xIn0.667xCr2-yInySe4 (0 < x + y < 0.6) with indium in both tetrahedral and octahedral lattice sites.  相似文献   

10.
采用循环伏安法(CV)对离子液体Reline中三元CuCl2+InCl3+SeCl4体系和四元CuCl2+InCl3+GaCl3+SeCl4体系的电化学行为进行了研究。研究表明,In3+并入三元CIS(Cu-In-Se)薄膜体系和Ga3+并入四元CIGS(Cu-In-Ga-Se)薄膜体系均有两种途径:一是发生共沉积,二是直接还原。利用电感耦合等离子体发射光谱(ICP)和扫描电镜(SEM)对沉积电势、镀液温度和主盐浓度对CIGS薄膜组成、镀层表面形貌的影响进行了测试,结果表明通过工艺参数的选择可以控制Ga/(Ga+In)和CIGS薄膜组成并得到化学计量比为Cu1.00In0.78Ga0.27Se2.13的薄膜。  相似文献   

11.
Quaternary chalcogenides InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 were synthesized on direct combination of their elements in stoichiometric ratios at T>800 °C under vacuum. Their structures were determined with X-ray diffraction of single crystals. InSn2Bi3Se8 crystallizes in monoclinic space group C2/m (No. 12) with a=13.557(3) Å, b=4.1299(8) Å, c=15.252(3) Å, β=115.73(3)°, V=769.3(3) Å3, Z=2, and R1/wR2/GOF=0.0206/0.0497/1.092; In0.2Sn6Bi1.8Se9 crystallizes in orthorhombic space group Cmc21 (No. 36) with a=4.1810(8) Å, b=13.799(3) Å, c=31.953(6) Å, V=1843.4(6) Å3, Z=4, and R1/wR2/GOF=0.0966/0.2327/1.12. InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 are isostructural with CuBi5S8 and Bi2Pb6S9 phases, respectively. The structures of InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9 feature a three-dimensional framework containing slabs of NaCl-(311) type with varied thicknesses. Calculations of the electronic structure and measurements of electrical conductivity indicate that these materials are semiconductors with narrow band gaps. Both compounds show n-type semiconducting properties with Seebeck coefficients −270 and −230 μV/K at 300 K for InSn2Bi3Se8 and In0.2Sn6Bi1.8Se9, respectively.  相似文献   

12.
The Quaternary System ZnIn2S4? ZnIn2Se4? In2Se3? In2S3 The title system has been investigated on the indium rich side (ratio In/Zn ≥ 2) on samples quenched from 800°C to room temperature using x-ray methods. In this section 7 different phases could be identified the phase borders of which are given. ZnIn2S4-type and thiogallate type mixed crystals only show a small region of homogeneity while the monophase region of spinel type mixed crystals in the indiumsulfide rich part of the phase diagram has a larger extension. There is a new trigonal compound ZnIn2S2Se2 (ahex = 3.937, chex = 31.97 Å) with a large region of homogeneity. In the indiumselenide rich part there are two new phases: (i) Zn0.4In2Se3.4 with unknown structure and (ii) a ternary phase of unknown structure in the system In2S3?xSex for 2.1 ≤ x ≤ 2.7.  相似文献   

13.
van der Waals In2Se3 has attracted significant attention for its room-temperature 2D ferroelectricity/antiferroelectricity down to monolayer thickness. However, instability and potential degradation pathway in 2D In2Se3 have not yet been adequately addressed. Using a combination of experimental and theoretical approaches, we here unravel the phase instability in both α- and β′-In2Se3 originating from the relatively unstable octahedral coordination. Together with the broken bonds at the edge steps, it leads to moisture-facilitated oxidation of In2Se3 in air to form amorphous In2Se3−3xO3x layers and Se hemisphere particles. Both O2 and H2O are required for such surface oxidation, which can be further promoted by light illumination. In addition, the self-passivation effect from the In2Se3−3xO3x layer can effectively limit such oxidation to only a few nanometer thickness. The achieved insight paves way for better understanding and optimizing 2D In2Se3 performance for device applications.  相似文献   

14.
The binary system Li2Se-In2Se3 was investigated in the range of 40 to 100 mol% In2Se3 by thermoanalytical and X-ray methods. The system is characterized by two eutectic points. Beside the two binary components and the known ternary compound LiInSe2 another ternary compound crystallizes in this binary system at 83.3 mol% In2Se3. This compound was identified as LiIn5Se8. In contrast to (Cu, Ag)IB5 IIIC8 VI compounds such as CuIn5S8 [1] it does not crystallize in the spinel structure. LiIn5Se8 shows a stratified structure. The melting point was determined to be at 810°C. Starting from room temperature up to the melting point no phase transitions were observed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
A porous graphitic carbon nitride (g‐C3N4)/graphene composite was prepared by a simple hydrothermal method and explored as the counter electrode of dye‐sensitized solar cells (DSCs). The obtained g‐C3N4/graphene composite was characterized by XRD, SEM, TEM, FTIR spectroscopy, and X‐ray photoelectron spectroscopy. The results show that incorporating graphene nanosheets into g‐C3N4 forms a three‐dimensional architecture with a high surface area, porous structure, efficient electron‐transport network, and fast charge‐transfer kinetics at the g‐C3N4/graphene interfaces. These properties result in more electrocatalytic active sites and facilitate electrolyte diffusion and electron transport in the porous framework. As a result, the as‐prepared porous g‐C3N4/graphene composite exhibits an excellent electrocatalytic activity. In I?/I3? redox electrolyte, the charge‐transfer resistance of the porous g‐C3N4/graphene composite electrode is 1.8 Ω cm2, which is much lower than those of individual g‐C3N4 (70.1 Ω cm2) and graphene (32.4 Ω cm2) electrodes. This enhanced electrocatalytic performance is beneficial for improving the photovoltaic performance of DSCs. By employing the porous g‐C3N4/graphene composite as the counter electrode, the DSC achieves a conversion efficiency of 7.13 %. This efficiency is comparable to 7.37 % for a cell with a platinum counter electrode.  相似文献   

16.

Two series of samples of the composition CuIn1?XCoXSe2 (m-series) and Cu1?X/2In1?X/2CoXSe2 (d-series) were prepared by solid-state synthesis and their magnetic properties were investigated. It was shown that cobalt is much better incorporated into the chalcopyrite matrix of the d-series samples, thus providing the onset of paramagnetic properties. Quenching allows the concentration of the incorporated cobalt to increase, which leads to the onset of weak ferromagnetism.

  相似文献   

17.
Structures of compounds in the Cu2Se-In2Se3-Ga2Se3 system have been investigated through X-ray diffraction. Single crystal structure studies for the so-called stoichiometric compounds Cu(In,Ga)Se2 (CIGSe) confirm that the chalcopyrite structure (space group I4¯2d) is very flexible and can adapt itself to the substitution of Ga for In. On the other hand a structure modification is evidenced in the Cu1−z(In0.5Ga0.5)1+z/3Se2 series when the copper vacancy ratio (z) increases; the chalcopyrite structure turns to a modified-stannite structure (I4¯2m) when z≥0.26. There is a continuous evolution of the structure from Cu0.74(In0.5Ga0.5)1.09Se2 to Cu0.25(In0.5Ga0.5)1.25Se2 ((i.e. Cu(In0.5Ga0.5)5Se8), including Cu0.4(In0.5Ga0.5)1.2Se2 (i.e. Cu(In0.5Ga0.5)3Se5). From this single crystal structural investigation, it is definitively clear that no ordered vacancy compound exists in that series. X-ray photoemission spectroscopy study shows for the first time that the surface of powdered Cu1−z(In0.5Ga0.5)1+z/3Se2 compounds (z≠0) is more copper-poor than the bulk. The same result has often been observed on CIGSe thin films material for photovoltaic applications. In addition, optical band gaps of these non-stoichiometric compounds increase from 1.2 to 1.4 eV when z varies from 0 to 0.75.  相似文献   

18.
Third-order nonlinear optical properties of GeSe2–In2Se3–CsI chalcogenide bulk glasses are studied by Standard pico-second (ps) time-resolved optical Kerr effect (OKE) technique. The obtained χ(3) and n2 at 1064 nm of the glass 72.25GeSe2–23.75In2Se3–5CsI are as large as 10.07 × 10−12 esu and 6.5 × 10−18 m2/W, respectively, more than twice that of As2S3 glass. The relationship between glass compositions and the third-order nonlinear optical responses was analyzed by Raman spectra in terms of structural evolution. It is suggested that the tetrahedral units ([GeSe4] and [InSe4]) play an important role in the ultrafast third-order nonlinear optical responses of these chalcohalide glasses.  相似文献   

19.
A new phase in europium‐tin‐chalcogenide chemistry has been prepared using the reactive flux method: Eu8(Sn4Se14)(Se3)2. The compound crystallizes in the orthorhombic space group P21212 with cell parameters a = 11.990(2) Å, b = 16.425(4) Å, c = 8.543(1) Å, and Z = 2. Eu8(Sn4Se14)(Se3)2 is a three dimensional structure with EuII cations linked together with an unusual (Sn4Se14)12– anionic unit and (Se3)2– chains. UV‐VIS‐NIR band‐gap analysis shows that these black metallic crystals are likely semiconductors with an optical band‐gap of 1.07 eV.  相似文献   

20.
Wide-coverage near infrared (NIR) phosphor-converted LEDs possess promising potential for practical applications, but little is developed towards the efficient and wide-coverage NIR phosphors. Here, we report the single-component lanthanide (Ln3+) ions doped Cs2M(In0.95Sb0.05)Cl6 (M=alkali metal) nanocrystals (NCs), exhibiting emission from 850 to 1650 nm with high photoluminescence quantum yield of 20.3 %, which is accomplished by shaping the multiple metal halide octahedra of double perovskite via the simple alkali metal substitution. From Judd-Ofelt theoretical calculation and spectroscopic investigations, the shaping of metal halide octahedra in Cs2M(In1−xSbx)Cl6 NCs can break the forbidden of f-f transition of Ln3+, thus increasing their radiative transition rates and simultaneously boosting the energy transfer efficiency from host to Ln3+. Finally, the wide-coverage NIR LEDs based on Sm3+, Nd3+, Er3+-tridoped Cs2K0.5Rb0.5(In0.95Sb0.05)Cl6 NCs are fabricated and employed in the multiplex gas sensing and night-vision application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号