首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Solar-driven catalysts on semiconductors to produce hydrogen are considered as a means to solve environmental issues. In this study, H2 production coupling with oxygen consumption by noble metal-free α-FeOOH was demonstrated even though the conduction band edge was lower than the reduction potential of H+ to H2. For activation of α-FeOOH, an electron donor, Hg-Xe irradiation, and low pH (ca. 5) were indispensable factors. The H2 production from H2O was confirmed by GC-MS using isotope-labeled water (D2O) and deuterated methanol. The α-FeOOH synthesized by coprecipitation method showed 25 times more active than TiO2. The photocatalytic activity was stable for over 400 h. Our study suggests that α-FeOOH known as rust can produce H2 by light induction.  相似文献   

2.
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal–organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr−NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr−NH to *Pyr−N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.  相似文献   

3.
For electrocatalysts for the hydrogen evolution reaction (HER), encapsulating transition metal phosphides (TMPs) into nitrogen-doped carbon materials has been known as an effective strategy to elevate the activity and stability. Yet still, it remains unclear how the TMPs work synergistically with the N-doped support, and which N configuration (pyridinic N, pyrrolic N, or graphitic N) contributes predominantly to the synergy. Here we present a HER electrocatalyst (denoted as MoP@NCHSs) comprising MoP nanoparticles encapsulated in N-doped carbon hollow spheres, which displays excellent activity and stability for HER in alkaline media. Results of experimental investigations and theoretical calculations indicate that the synergy between MoP and the pyridinic N can most effectively promote the HER in alkaline media.  相似文献   

4.
A graphene-wrapped polyaniline nanoparticles film embedded in carbon cloth (CC/PANI/G) was fabricated and used as a 3D anodic electrocatalyst for oxidation of toluene methyl C−H groups. The methyl C−H bonds can be oxidized effectively at the CC/PANI/G anode with 99.9 % toluene conversion at a low applied voltage of only 1.0 V, which implies low energy input. Importantly, 86.6 % of toluene methyl C−H groups were converted to benzoyl groups (C=O), and hydrogen was produced efficiently at the cathode. The electrocatalytic efficiency at the CC/PANI/G anode was higher at lower voltage (1.0 V) than at higher voltage (1.5 V), and more hydrogen was produced at the corresponding cathode. The synergistic effect between the dynamic redox chemistry of nanoPANI and the excellent conductivity and anticorrosive action of graphene determined the high electrocatalytic efficiency of the oxidation of toluene methyl C−H groups at the CC/PANI/G anode. Owing to the chemical bonding between graphene and PANI, the anticorrosive CC/PANI/G anodic electrocatalyst was durable and effective for oxidation of toluene methyl C−H groups in acidic environment. This approach provides advanced electrode materials for transforming stable chemical bonds (C−H) into useful functional groups (C=O), which will be beneficial for the synthesis of organic intermediates with coupled hydrogen production.  相似文献   

5.
Understanding the nature of single-atom catalytic sites and identifying their spectroscopic fingerprints are essential prerequisites for the rational design of target catalysts. Here, we apply correlated in situ X-ray absorption and infrared spectroscopy to probe the edge-site-specific chemistry of Co−N−C electrocatalyst during the oxygen reduction reaction (ORR) operation. The unique edge-hosted architecture affords single-atom Co site remarkable structural flexibility with adapted dynamic oxo adsorption and valence state shuttling between Co(2−δ)+ and Co2+, in contrast to the rigid in-plane embedded Co1−Nx counterpart. Theoretical calculations demonstrate that the synergistic interplay of in situ reconstructed Co1−N2-oxo with peripheral oxygen groups gives a rise to the near-optimal adsorption of *OOH intermediate and substantially increases the activation barrier for its dissociation, accounting for a robust acidic ORR activity and 2e selectivity for H2O2 production.  相似文献   

6.
Russian Journal of Organic Chemistry - Dichlorocarbene generated from chloroform in aqueous–alkaline medium in the presence of N-methylmorpholine N-oxide is converted to phosgene which reacts...  相似文献   

7.
Atomically precise metal nanoclusters (NCs) with unique optical properties and abundant catalytic sites are promising in photocatalysis. However, their light-induced instability and the difficulty of utilizing the photogenerated carriers for photocatalysis pose significant challenges. Here, MAg24 (M=Ag, Pd, Pt, and Au) NCs doped with diverse single heteroatoms have been encapsulated in a metal–organic framework (MOF), UiO-66-NH2, affording MAg24@UiO-66-NH2. Strikingly, compared with Ag25@UiO-66-NH2, the MAg24@UiO-66-NH2 doped with heteroatom exhibits much enhanced activity in photocatalytic hydrogen production, among which AuAg24@UiO-66-NH2 presents the best activity up to 3.6 mmol g−1 h−1, far superior to all other counterparts. Moreover, they display excellent photocatalytic recyclability and stability. X-ray photoelectron spectroscopy and ultrafast transient absorption spectroscopy demonstrate that MAg24 NCs encapsulated into the MOF create a favorable charge transfer pathway, similar to a Z-scheme heterojunction, when exposed to visible light. This promotes charge separation, along with optimized Ag electronic state, which are responsible for the superior activity in photocatalytic hydrogen production.  相似文献   

8.
Construction of local donor–acceptor architecture is one of the valid means for facilitating the intramolecular charge transfer in organic semiconductors. To further accelerate the interface charge transfer, a ternary acceptor–donor–acceptor (A1-D-A2) molecular junction is established via gradient nitrogen substituting into the polymer skeleton. Accordingly, the exciton splitting and interface charge transfer could be promptly liberated because of the strong attracting ability of the two different electron acceptors. Both DFT calculations and photoluminescence spectra elucidate the swift charge transfer at the donor-acceptor interface. Consequently, the optimum polymer, N3-CP, undergoes a remarkable photocatalytic property in terms of hydrogen production with AQY405 nm=26.6 % by the rational design of asymmetric molecular junctions on organic semiconductors.  相似文献   

9.
Recently, miniature H2 generator to power fuel cells for portable/micro electronic devices and passenger propulsion has been the focus of intense research activities1-3. One of the strategies is to find simple CO-free H2 production with novel microreactor…  相似文献   

10.
Zn-air batteriesare a perspective power source for grid-storage. But, after they are discharged at1.1 to 1.2 V, large overpotential is required for their charging (usually 2.5 V). This is due to a sluggish oxygen evolution reaction (OER). Incorporating organic pollutants into the cathode electrolyte is a feasible strategy for lowering the required charging potential. In the discharge process, the related oxygen reduction reaction, hydrophobic electrocatalysts are more popular than hydrophilic ones. Here, a hydrophobic bifunctional polyoxometalate electrocatalyst is synthesized by precise structural design. It shows excellent activities in both bisphenol A degradation and oxygen reduction reactions. In bisphenol A containing electrolyte, to achieve 100 mA ⋅ cm−2, its potential is only 1.32 V, which is 0.34 V lower than oxygen evolution reaction. In the oxygen reduction reaction, this electrocatalyst follows the four-electron mechanism. In both bisphenol A degradation and oxygen reduction reactions, it shows excellent stability. With this electrocatalyst as cathode material and bisphenol A containing KOH as electrolyte, a Zn-air battery was assembled. When “charged” at 85 mA ⋅ cm−2, it only requires 1.98 V. Peak power density of this Zn-air battery reaches 120.5 mW ⋅ cm−2. More importantly, in the “charge” process, bisphenol A is degraded, which achieves energy saving and pollutant removal simultaneously in one Zn-air battery.  相似文献   

11.
Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C−H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ−COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ−COFE5−O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C−H functionalization than the corresponding NQ−COFE5. Specially, we evaluated the photocatalytic performance of NQ−COFE5−O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ−COFE5−O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.  相似文献   

12.
Rechargeable lithium−oxygen (Li−O2) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li2O2) is employed as a microscopic pressure resource to induce the built-in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li+) transport during cycling. Piezopotential caused by the intrinsic stress-strain of solid Li2O2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li+ transfer, and thus improving the redox reaction kinetics of Li−O2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress-strain transformation on the electrochemical reaction kinetics and Li+ interface transport for the Li−O2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li+ transport for battery system.  相似文献   

13.
Metal-organic frameworks (MOFs) constructed by ligands and metal clusters, have been considered as a promising material for photocatalytic water splitting. In this work, a solvent-assisted ligand exchange (SALE) method has been applied through partial reverse substitution of the ligand in NH2-MIL-125 (Ti) by 1,4-dicarboxybenzene (BDC). This modification strategy can optimize the charge transfer dynamics together with the preserved light absorption, resulting in a 3.3 times higher hydrogen production rate compared to the pristine material under visible-light irradiation. This work broadens the field of ligand modifications of MOFs to boost the photocatalytic performance.  相似文献   

14.
In this study, a rapid, sensitive, and fully automated on-line solid phase extraction (SPE)?Cliquid chromatography (LC)?Cmass spectrometry (MS) method for the analysis of explosive residues in water, was systematically investigated. First, separation of explosive residues was achieved by reverse-phase chromatography using an XDB-C18 column in 30 min with an eluent containing 0.1% acetic acid, 5 mM ammonium acetate, and methanol. Secondly, atmospheric pressures chemical ionization (APCI) and electrospray ionization (ESI) interfaced with the MS detector were used to examine the explosive residues, indicating that APCI?CMS was more suitable than ESI?CMS for the detection of explosives. Thirdly, the conditions for on-line SPE, including solvent pH and sample injected volume, were optimized. The calibration curves obtained for all explosives studied were linear in the concentration range 0.5?C50 ??g L?1. The detection limits of this method ranged from 0.05 to 0.5 ??g L?1 when 4000 ??L of sample was on-line pre-concentrated on C18 enrichment column. The recoveries from lake waters spiked with explosive standard solution ranged from 90.5 to 108.0%. The proposed method is simple, fast, and could be applied successfully to the analysis of explosive residues in contaminated water without any further pretreatment.  相似文献   

15.
A simple, rapid and sensitive hollow-fiber with drop-to-drop solvent microextraction (HF-DDSME) combined with gas chromatography?Cmass spectrometry (GC?CMS) has been successfully developed for extraction and determination of antidepressants drugs (AD) in blood sample. The parameters that affect the separation and preconcentration of AD from sample solution were investigated. Calibration curve obtained for three AD were in the range of 100?C1,000; 150?C1,200; and 80?C1,200 ng mL?1 for amitriptyline, imipramine, and promethazine, respectively, with correlation coefficient (R 2 ) between 0.990 and 0.997. The limit of detection (LOD) obtained for amitriptyline, imipramine and promethazine was 25, 30 and 18 ng mL?1, respectively. The developed method has been successfully applied for the determination of AD concentration in blood sample, and the recoveries for the spiked samples were in the range of 92.3?C97.6%. The sample preparation procedure is very simple, effective and virtually solvent-free, and indicated to be a good alternative for the traditional liquid?Cliquid extraction. Finally, the proposed method was successfully applied for the determination of drug concentration of AD in human blood sample.  相似文献   

16.
The exceptional nature of WO3−x dots has inspired widespread interest, but it is still a significant challenge to synthesize high-quality WO3−x dots without using unstable reactants, expensive equipment, and complex synthetic processes. Herein, the synthesis of ligand-free WO3−x dots is reported that are highly dispersible and rich in oxygen vacancies by a simple but straightforward exfoliation of bulk WS2 and a mild follow-up chemical conversion. Surprisingly, the WO3−x dots emerged as co-reactants for the electrochemiluminescence (ECL) of Ru(bpy)32+ with a comparable ECL efficiency to the well-known Ru(bpy)32+/tripropylamine (TPrA) system. Moreover, compared to TPrA, whose toxicity remains a critical issue of concern, the WO3−x dots were ca. 300-fold less toxic. The potency of WO3−x dots was further explored in the detection of circulating tumor cells (CTCs) with the most competitive limit of detection so far.  相似文献   

17.
Liquid chromatography with electrochemical detection (LC-ED), coupled with in vivo microdialysis sampling, has been used for analysis of thiols. An acetylene black–dihexadecyl hydrogen phosphate (AB–DHP) composite film-modified electrode was used as working electrode. The AB–DHP-modified electrode enabled efficient electrocatalytic oxidation of l-cysteine (l-Cys) and glutathione (GSH) with relatively high sensitivity, stability, and longevity. The peak currents of l-Cys and GSH were linear in the concentrations ranges 2.0 × 10?7–2.0 × 10?4 and 3.0 × 10?7–5.0 × 10?4 mol L?1, respectively, with calculated detection limits (S/N = 3) of 1.0 × 10?7 and 2.0 × 10?7 mol L?1, respectively. The method has been successfully used to measure the amounts of l-Cys and GSH in striatal microdialysate of freely moving rats.  相似文献   

18.
Solid-phase extraction followed by dispersive liquid–liquid microextraction (SPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating benzaldehyde, a toxic oxidation product of the widely used preservative and co-solvent benzyl alcohol, in injectable formulation solutions. SPE of benzaldehyde from samples was carried out using C18 sorbent. After the elution of benzaldehyde from the sorbent by using acetonitrile, DLLME technique was performed on the obtained solution. Benzaldehyde was preconcentrated by using DLLME technique. Thus, 1.5 mL acetonitrile extract (disperser solvent) and 55.0 µL 1,2-dichloroethane (extraction solvent) were added to 5 mL ultra pure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limit (LOD) of benzaldehyde calculated as three times the signal-to-noise ratio (S/N) was 0.08 µg L?1. The relative standard deviation (RSD) for four replicates was 5.8 %. The calibration graph was linear within the concentration range of 0.5–500 µg L?1 for benzaldehyde. The proposed method has been successfully applied to the analysis of the benzaldehyde in injectable formulation solutions (diclofenac, vitamin B-complex and voltaren) and the relative recoveries were between 88 and 92 % and show that matrix has a negligible effect on the performance of the proposed method.  相似文献   

19.
This paper describes a new method for the rapid extraction and unequivocal confirmation of herbicides chlormequat and mepiquat in wheat flours and various flours utilized in infant foods. The highly automated extraction procedure is based on accelerated solvent extraction, followed by liquid chromatography-tandem mass spectrometry as a confirmatory analysis. Typical recoveries from flours and baby food samples ranged from 83 to 99% at a fortification level of 10 ppb, corresponding to the maximum residue limits established by the European Union; while relative standard deviations (RSD) were less than 10% for all samples. The limit of detection (signal-to-noise ratio = 3) of the method for the considered phenols in baby food samples are less than 0.1 μg g?1. Traces of the selected herbicides have been detected in about 50% of baby foods, bought from different Roman supermarkets and butcher shops, applying the described methodology.  相似文献   

20.
Stefan Baj 《合成通讯》2013,43(14):2385-2391
Cyclic ketones have been efficiently oxidized with hydrogen peroxide using acidic ionic liquids (ILs) as solvents. This is a new method for the synthesis of lactones with high yields that does not utilize any additional catalysts and enables ILs to be recycled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号