首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiple-resonance thermally activated delayed fluorescence (MR-TADF) materials are highly coveted for their high efficiency and narrowband emission in organic light-emitting diodes (OLEDs). Nevertheless, the development of near-infrared (NIR) MR-TADF emitters remains a formidable challenge. In this study, we design two new NIR MR-TADF emitters, PXZ−R−BN and BCz−R−BN, by embedding 10H-phenoxazine (PXZ) and 7H-dibenzo[c,g]carbazole (BCz) fragments to increase the electron-donating ability or extending π-conjugation on the framework of para-boron fusing polycyclic aromatic hydrocarbons (PAHs). Both compounds emit in the NIR region, with a full-width at half-maximum (FWHM) of 49 nm (0.13 eV) for PXZ−R−BN and 43 nm (0.11 eV) for BCz−R−BN in toluene. To sensitize the two NIR MR-TADF emitters in OLEDs, a new platinum complex, Pt-1, is designed as a sensitizer. The PXZ−R−BN-based sensitized OLEDs achieve a maximum external quantum efficiency (EQEmax) of nearly 30 % with an emission band at 693 nm, and exceptional long operational stability with an LT97 (time to 97 % of the initial luminance) value of 39084 h at an initial radiance of 1000 mW sr−1 m−2. The BCz−R−BN-based OLEDs reach EQEmax values of 24.2 % with an emission band at 713 nm, which sets a record value for NIR OLEDs with emission bands beyond 700 nm.  相似文献   

2.
Developing highly luminescent and extensively stable silver cluster-assembled materials (SCAMs) from the inferior luminogens and unstable silver cluster is an important and challenging issue. Herein, a new luminescent three-dimensional SCAM ( Ag12CPPP , [Ag12(StBu)6(CF3COO)6(CPPP)2(DMAc)12]n; CPPP=2,5-bis(4-cyanophenyl)-1,4-bis(4-(pyridine-4-yl)-phenyl)-1,4-dihydropyrrolo[3,2-b]pyrrole, DMAc=dimethylacetamide) was designed and synthesized with a quadridentate rigid emission ligand ( CPPP ) and a silver–chalcogenolate cluster (SCC) containing 12 AgI atoms. The luminescence study indicates that CPPP is an aggregation-caused quenching (ACQ) molecule with twisted intramolecular charge transfer (TICT) character. Benefiting from the strong immobilization effect in the robust framework, the quantum yield of CPPP is greatly enhanced in Ag12CPPP compared with that of CPPP in solution or in the solid state. As a result, Ag12CPPP exhibits typical matrix coordination induced emission (MCIE) effect. Such efficient rigidifying methodology provides a promising approach for enhancing luminescence of ACQ molecules in an aggregated state and strengthening the silver cluster in an unstable state.  相似文献   

3.
The potential for N-heterocyclic carbenes (NHCs) to be used as novel chelating ligands for bio-inorganic pharmaceuticals is discussed. In this paper, we design, synthesize and characterize two NHC precursors, 6 and 7, that we believe have potential for use as metal chelators for pharmaceuticals. The NHC precursors are composed of imidazolium and pyridine rings that would form mixed donor NHCs upon metallation with medicinally relevant metals. The exploration of the silver chemistry of 6 yielded the dimeric silver NHC complex 8[BPh4]2. The study of the silver chemistry of 7 gave 9[1/3(Ag4Br7)] and 10[NO3]3. Complex 9[1/3(Ag4Br7)] appears to be a silver biscarbene charge balanced by a silver bromide anionic cluster. Complex 10[NO3]3 is a trinuclear silver cluster that is stabilized by NHCs and pyridine rings. Silver NHCs have shown themselves to be excellent transmetallation agents for access to other metal NHC systems. It is envisioned that the silver NHCs 8[BPh4]2, 9[1/3(Ag4Br7)] and 10[NO3]3 will readily transfer to medicinally relevant metals, such 105Rh.  相似文献   

4.
Colourless octahedral single crystals of solvent‐free Ag2[B12Cl12] (cubic, Pa3¯; a = 1238.32(7) pm, Z = 4) are obtained by the metathesis reaction of Cs2[B12Cl12] with an aqueous solution of silver nitrate (AgNO3) and recrystallization of the crude product from water. The crystal structure is best described as a distorted anti‐CaF2‐type arrangement in which the quasi‐icosahedral [B12Cl12]2— anions (d(B—B) = d(B—Cl) = 177—180 pm) are arranged in a cubic closest‐packed fashion. The tetrahedral interstices are filled with Ag+ cations which are strongly displaced from their ideal positions. Thereby each silver atom gets coordinated by six chlorine atoms from the edges of three [B12Cl12]2— anions providing a distorted octahedral coordination sphere to the Ag+ cations (d(Ag—Cl) = 283—285 pm, CN = 6).  相似文献   

5.
6.
Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high‐efficient red organic light‐emitting diodes (OLEDs) and non‐doped deep red/near‐infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ‐PXZ and mDPBPZ‐PXZ, with twisted donor–acceptor structures were designed and synthesized to study molecular design strategies of high‐efficiency red TADF emitters. BPPZ‐PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non‐doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π–π interactions. mDPBPZ‐PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ‐PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non‐doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.  相似文献   

7.
A molecular design to high-performance red and near-infrared (NIR) organic light-emitting diodes (OLEDs) emitters remains demanding. Herein a series of dinuclear platinum(II) complexes featuring strong intramolecular Pt???Pt and π–π interactions has been developed by using N-deprotonated α-carboline as a bridging ligand. The complexes in doped thin films exhibit efficient red to NIR emission from short-lived (τ=0.9–2.1 μs) triplet metal-metal-to-ligand charge transfer (3MMLCT) excited states. Red OLEDs demonstrate high maximum external quantum efficiencies (EQEs) of up to 23.3 % among the best PtII-complex-doped devices. The maximum EQE of 15.0 % and radiance of 285 W sr?1 m?2 for NIR OLEDs (λEL=725 nm) are unprecedented for devices based on discrete molecular emitters. Both red and NIR devices show very small efficiency roll-off at high brightness. Appealing operational lifetimes have also been revealed for the devices. This work sheds light on the potential of intramolecular metallophilicity for long-wavelength molecular emitters and electroluminescence.  相似文献   

8.
Fluorescence imaging in the near‐infrared (NIR) region (650–900 nm) is useful for bioimaging because background autofluorescence is low and tissue penetration is high in this range. In addition, NIR fluorescence is useful as a complementary color window to green and red for multicolor imaging. Here, we compared the photoinduced electron transfer (PeT)‐mediated fluorescence quenching of silicon‐ and phosphorus‐substituted rhodamines (SiRs and PRs) in order to guide the development of improved far‐red to NIR fluorescent dyes. The results of density functional theory calculations and photophysical evaluation of a series of newly synthesized PRs confirmed that the fluorescence of PRs was more susceptible than that of SiRs to quenching via PeT. Based on this, we designed and synthesized a NIR fluorescence probe for Ca2+, CaPR‐1 , and its membrane‐permeable acetoxymethyl derivative, CaPR‐1 AM , which is distributed to the cytosol, in marked contrast to our previously reported Ca2+ far‐red to NIR fluorescence probe based on the SiR scaffold, CaSiR‐1 AM , which is mainly localized in lysosomes as well as cytosol in living cells. CaPR‐1 showed longer‐wavelength absorption and emission (up to 712 nm) than CaSiR‐1 . The new probe was able to image Ca2+ at dendrites and spines in brain slices, and should be a useful tool in neuroscience research.  相似文献   

9.
Gas‐phase photoelectron spectroscopy (PES) was conducted on [XAg24(SPhMe2)18]? (X=Ag, Au) and [YAg24(SPhMe2)18]2? (Y=Pd, Pt), which have a formal superatomic core (X@Ag12)5+ or (Y@Ag12)4+ with icosahedral symmetry. PES results show that superatomic orbitals in the (Au@Ag12)5+ core remain unshifted with respect to those in the (Ag@Ag12)5+ core, whereas the orbitals in the (Y@Ag12)4+ (Y = Pd, Pt) core shift up in energy by about 1.4 eV. The remarkable doping effect of a single Y atom (Y=Pd, Pt) on the electronic structure of the chemically modified (Ag@Ag12)5+ superatom was reproduced by theoretical calculations on simplified model systems and was ascribed to 1) the weaker binding of valence electrons in Y@(Ag+)12 compared to Ag+@(Ag+)12 due to the reduction in formal charge of the core potential, and 2) the upward shift of the apparent vacuum level due to the presence of a repulsive Coulomb barrier between [YAg24(SPhMe2)18]? and electron.  相似文献   

10.
K4[Ag404] Structure Type M4[Ag4O4] (M ? Li? Cs) and M4[Cu4O4] (M ? Li? Rb) have been prepared anew; as an example the crystal structure of K4[Ag4O4] has been revised. Contrary to our first report [2, 3] it crystallizes in the space-group I4 m2 with the “ring” [Ag4O4]4? which is not plane, however. Each two O2? (trans-arrangement) are rather (0.02 Å) above and below the plane of the “ring”, respectively. The new parameters are given in the text. The distances, for example d(Ag+·O2?) = 2.058 Å and the Madelung Part of Lattice Energy, MAPLE, are both in a very good agreement with the measurements and calculations, respectively, which have been done on other ternary oxides with silver.  相似文献   

11.
A new salicylic-based open-chain crown ether ligand, 1,10-bis(2′-carboxylphenyl)-1,4,7,10-tetraoxadecane (BCPTD) was synthesized. Solutions of its complex with Tb3+ can emit the intrinsic fluorescence of Tb3+. The fluorescence intensity of the complex in KCl solution was enhanced by the addition of silver(I), leading to a new fluorescence enhancement phenomenon. The spectrofluorimetric determination of traces of silver(I) based on the above phenomenon was carried out. The excitation and emission wavelengths are 298 and 545 nm, respectively. Under optimal conditions, the differential value of fluorescence intensity in the absence and presence of Ag+ was proportional to the concentration of silver(I) in the range 0.5-20 μg ml−1. The method was applied to the determination of silver(I) in a standard ore sample. The analytical performance is investigated in detail by using common aromatic carboxylic acids or synthetic analogues of BCPTD as ligands to replace BCPTD. It was found that Tb-aromatic acid complexes did not result in fluorescence enhancement of Tb3+ in AgCl collosol. The phenomenon was only observed in Tb(III) with BCPTD or its open-chain crown ether analogues solutions.In addition, the enhancement of the fluorescence intensity of terbium(III) in these complexes depends on the extent of formation of the AgCl collosol.  相似文献   

12.
The reaction of AgSCN with (Me3PhN)3[Fe(NCS)6] in DMF yields two‐dimensional polymeric, heteronuclear complexes (Me3PhN)2[Ag2Fe(SCN)6] ( 1 ) and (Me3PhN)6[Ag6Fe3(SCN)18] · CH2Cl2·DMF ( 2a ) with bridging SCN? ligands, whereas additional (Me3PhN)(SCN) leads to (Me3PhN)4[Ag2Fe(SCN)8] ( 3 ) with a one‐dimensional structure. The selenocyanato complex 2b , homologous to 2a , could also be prepared. Single crystal X‐ray structure determinations show, that the Ag+ ions in 1 and 2a are coordinated tetrahedrally by four S atoms, in 3 by one N and three S atoms of the bridging SCN? ligands; six N atoms of the SCN? or SeCN? ligands bind to Fe2+ in an octahedral arrangement.  相似文献   

13.
The controllable preparation of metal nanoclusters in high yield is an essential prerequisite for their fundamental research and extensive application. Here a synthetic approach termed “dual-level kinetic control” was developed to fabricate a family of new silver nanoclusters. The introduction of secondary ligands was first exploited to retard the reduction rate and accomplish the first-level kinetic control. And the cooling of the reaction was performed to further slow the reduction down and accomplish the second-level kinetic control. A family of atomically precise silver nanoclusters (including [Ag25(SR)18], [Ag34(SR)18(DPPP)3Cl4]2+, [Ag36(SR)26S4]2+, [Ag37(SR)25Cl1]+, and [Ag52(SR)28Cl4]2+) were controllably prepared and structurally determined. The developed “dual-level kinetic control” hopefully acts as a powerful synthetic tool to manufacture more nanoclusters with unprecedented compositions, structures, and properties.

A dual-level kinetic control was exploited to fabricate a family of atomically precise silver nanoclusters.  相似文献   

14.
The thermal behaviour of Ag2[PtCl4] and Ag2[PtCl6] complex salts in inert and reducing atmospheres has been studied. The thermolysis of compounds in a helium atmosphere is shown to occur in two stages. At the first stage, the complexes decompose in the temperature range of 350–500 °C with the formation of platinum and silver chloride and the release of chlorine gas. At the second stage, silver chloride is sublimated in the temperature range of 700–900 °C, while metallic platinum remains in the solid phase. In contrast to the thermolysis of Ag2[PtCl6], the thermal decomposition of Ag2[PtCl4] at 350 °C is accompanied by significant heat release, which is associated with disproportionation of the initial salt to Ag2[PtCl6], silver chloride, and platinum metal. It is confirmed by DSC measurements, DFT calculations of a suggested reaction, and XRD. The thermolysis of Ag2[PtCl4] and Ag2[PtCl6] compounds is shown to occur in a hydrogen atmosphere in two poorly separable steps. The compounds are decomposed within 170–350 °C, and silver and platinum are reduced to a metallic state, while a metastable single-phase solid solution of Ag0.67Pt0.33 is formed. The catalytic activity of the resulting nanoalloy Ag0.67Pt0.33 is studied in the reaction of CO total (TOX) and preferential (PROX) oxidation. Ag0.67Pt0.33 enhanced Pt nano-powder activity in CO TOX, but was not selective in CO PROX.  相似文献   

15.
A red–near‐IR dual‐emissive nanocluster with the composition [Au10Ag2(2‐py?C≡C)3(dppy)6](BF4)5 ( 1 ; 2‐py?C≡C is 2‐pyridylethynyl, dppy=2‐pyridyldiphenylphosphine) has been synthesized. Single‐crystal X‐ray structural analysis reveals that 1 has a trigonal bipyramidal Au10Ag2 core that contains a planar Au4(2‐py?C≡C)3 unit sandwiched by two Au3Ag(dppy)3 motifs. Cluster 1 shows intense red–NIR dual emission in solution. The visible emission originates from metal‐to‐ligand charge transfer (MLCT) from silver atoms to phosphine ligands in the Au3Ag(dppy)3 motifs, and the intense NIR emission is associated with the participation of 2‐pyridylethynyl in the frontier orbitals of the cluster, which is confirmed by a time‐dependent density functional theory (TD‐DFT) calculation.  相似文献   

16.
DNA has been used as a scaffold to stabilize small, atomically monodisperse silver nanoclusters, which have attracted attention due to their intriguing photophysical properties. Herein, we describe the X‐ray crystal structure of a DNA‐encapsulated, near‐infrared emitting Ag16 nanocluster (DNA–Ag16NC). The asymmetric unit of the crystal contains two DNA–Ag16NCs and the crystal packing between the DNA–Ag16NCs is promoted by several interactions, such as two silver‐mediated base pairs between 3′‐terminal adenines, two phosphate–Ca2+–phosphate interactions, and π‐stacking between two neighboring thymines. Each Ag16NC is confined by two DNA decamers that take on a horse‐shoe‐like conformation and is almost fully shielded from the solvent environment. This structural insight will aid in the determination of the structure/photophysical property relationship for this class of emitters and opens up new research opportunities in fluorescence imaging and sensing using noble‐metal clusters.  相似文献   

17.
The SCN Ion as an Ambidentate Ligand – Synthesis and Crystal Structures of (Bu4N)4[Ag2Fe2(SCN)12] and (Et4N)2 [Ag2Fe(SCN)6] In (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ) and (Et4N)2[Ag2Fe(SCN)6] ( 2 ) the ambidentate SCN anions link Ag+ with Fe3+ and Fe2+ centers, respectively. The tetranuclear anions in 1 are built from [Fe(NCS)6]3– groups connected by Ag+ ions. In 2 the same bridging pattern leads to polymeric anionic chains containing [Fe(NCS)6]4– groups linked by Ag+ ions. (Bu4N)4[Ag2Fe2(SCN)12] · 2 CH3NO2 ( 1 ): a = 1184.10(10), b = 1370.80(10), c = 1776.5(2) pm, α = 99.090(10), β = 102.100(10), γ = 100.360(10)°, V = 2715.5(4) · 106 pm3, space group P1; (Et4N)2[Ag2Fe(SCN)6] ( 2 ): a = 1607.0(2), b = 1006.92(9), c = 1096.13(9) pm, V = 1773.7(3) · 106 pm3, space group Pnnm.  相似文献   

18.
The recently-increasing interest in coinage metal clusters stems from their photophysical properties, which are controlled via heterometallation. Herein, we report homometallic AgI46S13 clusters protected by octahedral fac-[Ir(aet)3] (aet=2-aminoethanethiolate) molecules and their conversion to heterometallic AgI43MI3S13 (M=Cu, Au) clusters. The reactions of fac-[Ir(aet)3] with Ag+ and penicillamine produced [Ag46S13{Ir(aet)3}14]20+ ([ 1 ]20+), where a spherical AgI46S13 cluster is covered by fac-[Ir(aet)3] octahedra through thiolato bridges. [ 1 ]20+ was converted to [Ag43M3S13{Ir(aet)3}14]20+ ([ 1M ]20+) with an AgI43MI3S13 cluster by treatment with M+, retaining its overall structure. [ 1 ]20+ was photoluminescent and had an emission band ca. 690 nm that originated from an S-to-Ag charge transfer. While [ 1Cu ]20+ showed an emission band with a slightly higher energy of ca. 650 nm and a lower quantum yield, the emission band for [ 1Au ]20+ shifted to a much higher energy of ca. 590 nm with an enhanced quantum yield.  相似文献   

19.
The organic‐inorganic hybrid H5[Ag2(hyp)2]2[BW12O40] · 9H2O ( 1 ) (hpy = hypoxanthine), based on Keggin‐type polyoxometalate and hypoxanthine, was prepared by hydrothermal synthesis and characterized by single‐crystal and powder X‐ray diffraction, IR spectroscopy, elemental analysis, and thermogravimetry. The title compound has a two‐dimensional layer structure constructed by Keggin‐type [BW12O40]5– anion, silver, and the biomolecule hyp. In addition, compound 1 exhibited excellent stability and superior activity in the electro‐catalytic oxidation of glucose.  相似文献   

20.
Two luminescent, monoanionic chalcogenide-centered nonanuclear silver clusters stabilized by dichalcogenophosphates were synthesized and fully characterized by various spectroscopies including multinuclear NMR and ESI-mass. Single crystal X-ray diffraction studies on both cluster anions, [Ag9(S){S2P(OEt)2}8]?, 1, and [Ag9(Se){Se2P(OEt)2}8]?, 2, reveal that the nine silver atoms form an extremely distorted tricapped trigonal prism, which has an encapsulating chalcogenide. The coordination geometry of the central chalcogenide appears to be monocapped trigonal prismatic, which was analyzed by DFT calculations. The origin of the yellow emission is assigned by TDDFT calculations to originate from a chalcogen (ligand + encapsulated) → silver charge transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号