首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
构建异质结是改善半导体光响应和载流子传输的有效途径之一。采取电喷雾沉积法,在掺氟的二氧化锡玻璃(FTO)上先后制备了WO_(3)和Fe_(2)TiO_(5)纳米结构薄膜,并研究了其作为光阳极的光电催化性能。薄膜表面复杂的微纳米结构有效地增加了对光的捕获能力和化学反应比表面积;二者在界面处形成的异质结有效地抑制了光生载流子的复合,加速了电荷的转移,提升了光电催化水裂解性能。在1.23 V和1.6 V(vs. RHE)处,其光电流密度相比纯Fe_(2)TiO_(5)电极分别提升了1.4和4.6倍。  相似文献   

2.
Photoelectrochemical water splitting is to utilize collected photo-generated carrier for direct water cleavage for hydrogen production. It is a system combining photoconversion and energy storage since converted solar energy is stored as high energy-density hydrogen gas. According to intrinsic properties and band bending situation of a photoelectrode, hydrogen tends to be released at photocathode while oxygen at photoanode. In a tandem photoelectrochemical chemical cell, current passing through one electrode must equals that through another and electrode with lower conversion rate will limit efficiency of the whole device. Therefore, it is also of research interest to look into the common strategies for enhancing the conversion rate at photoanode. Although up to 15% of solar-to-hydrogen efficiency can be estimated according to some semiconductor for solar assisted water splitting, practical conversion ability of state-of-the-art photoanode has yet to approach that theoretical limit. Five major steps happen in a full water splitting reaction at a semiconductor surface:light harvesting with electron excitations, separated electron-hole pairs transferring to two opposite ends due to band bending, electron/hole injection through semiconductor-electrolyte interface into water, recombination process and mass transfer of products/reactants. They are closely related to different proposed parameters for solar water splitting evaluation and this review will first help to give a fast glance at those evaluation parameters and then summarize on several major adopted strategies towards high-efficiency oxygen evolution at photoanode surface. Those strategies and thereby optimized evaluation parameter are shown, in order to disclose the importance of modifying different steps for a photoanode with enhanced output.  相似文献   

3.
Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2–5 nm region. Mott–Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm−2 at 1.23 V vs. RHE were achieved on BiVO4, Bi2O3, TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.  相似文献   

4.
A sequence of alkali metal cation-exchanged Co metal-organic frameworks(Co-MOFs), therein after denoted as M@Co-MOF, M=Na+, K+, Rb+, and Cs+, was prepared and used as the precursors to obtain the corresponding alkali doped cobalt oxide(defined as M/Co3O4, M=Na+, K+, Rb+, and Cs+) through calcination under air atmosphere. The cobalt oxide modified by uniform alkali metals exhibited a significant promotion of catalytic activity for CO oxidation. The activity of M/Co3O4 decreased in the order of Cs+ > Na+ > K+ > Rb+. Experimental and theoretical results revealed that the anionic skeleton of Co-MOF could facilely adsorb alkali metal cations and play a crucial role in the formation of highly uniform alkali doped cobalt oxide. The further characterizations, such as temperature-programmed reduction of H2(H2-TPR), oxygen temperature-programmed desorption(O2-TPD), X-ray photoelectron spectroscopy(XPS), and in situ diffuse reflectance infrared Fourier transform(DRIFT) spectra demonstrated that the enhanced catalytic activity is originated from the interfacial electron transfer as well as weakened the Co-O bond strength, which promoted oxygen desorption from Co3O4 and formation of cobalt species with the lower valence state. The Cs/Co3O4 catalyst was maintained for 60 h without deactivation and still showed a high activity in the presence of water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号