首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite the intriguing potential shown by Sn-based perovskite oxides in CO2 electroreduction (CO2RR), the rational optimization of their CO2RR properties is still lacking. Here we report an effective strategy to promote CO2-to-HCOOH conversion of Sn-based perovskite oxides by A-site-radius-controlled Sn−O bond lengths. For the proof-of-concept examples of Ba1−xSrxSnO3, as the A-site cation average radii decrease from 1.61 to 1.44 Å, their Sn−O bonds are precisely shortened from 2.06 to 2.02 Å. Our CO2RR measurements show that the activity and selectivity of these samples for HCOOH production exhibit volcano-type trends with the Sn−O bond lengths. Among these samples, the Ba0.5Sr0.5SnO3 features the optimal activity (753.6 mA ⋅ cm−2) and selectivity (90.9 %) for HCOOH, better than those of the reported Sn-based oxides. Such optimized CO2RR properties could be attributed to favorable merits conferred by the precisely controlled Sn−O bond lengths, e.g., the regulated band center, modulated adsorption/activation of intermediates, and reduced energy barrier for *OCHO formation. This work brings a new avenue for rational design of advanced Sn-based perovskite oxides toward CO2RR.  相似文献   

2.
Electrochemical reduction of CO2 could mitigate environmental problems originating from CO2 emission. Although grain boundaries (GBs) have been tailored to tune binding energies of reaction intermediates and consequently accelerate the CO2 reduction reaction (CO2RR), it is challenging to exclusively clarify the correlation between GBs and enhanced reactivity in nanostructured materials with small dimension (<10 nm). Now, sub‐2 nm SnO2 quantum wires (QWs) composed of individual quantum dots (QDs) and numerous GBs on the surface were synthesized and examined for CO2RR toward HCOOH formation. In contrast to SnO2 nanoparticles (NPs) with a larger electrochemically active surface area (ECSA), the ultrathin SnO2 QWs with exposed GBs show enhanced current density (j), an improved Faradaic efficiency (FE) of over 80 % for HCOOH and ca. 90 % for C1 products as well as energy efficiency (EE) of over 50 % in a wide potential window; maximum values of FE (87.3 %) and EE (52.7 %) are achieved.  相似文献   

3.
Oxide-derived Cu (OD−Cu) featured with surface located sub-20 nm nanoparticles (NPs) created via surface structure reconstruction was developed for electrochemical CO2 reduction (ECO2RR). With surface adsorbed hydroxyls (OHad) identified during ECO2RR, it is realized that OHad, sterically confined and adsorbed at OD−Cu by surface located sub-20 nm NPs, should be determinative to the multi-carbon (C2) product selectivity. In situ spectral investigations and theoretical calculations reveal that OHad favors the adsorption of low-frequency *CO with weak C≡O bonds and strengthens the *CO binding at OD−Cu surface, promoting *CO dimerization and then selective C2 production. However, excessive OHad would inhibit selective C2 production by occupying active sites and facilitating competitive H2 evolution. In a flow cell, stable C2 production with high selectivity of ∼60 % at −200 mA cm−2 could be achieved over OD−Cu, with adsorption of OHad well steered in the fast flowing electrolyte.  相似文献   

4.
Electrochemical carbon dioxide reduction reaction (CO2RR) to produce valuable chemicals is a promising pathway to alleviate the energy crisis and global warming issues. However, simultaneously achieving high Faradaic efficiency (FE) and current densities of CO2RR in a wide potential range remains as a huge challenge for practical implements. Herein, we demonstrate that incorporating bismuth-based (BH) catalysts with L-histidine, a common amino acid molecule of proteins, is an effective strategy to overcome the inherent trade-off between the activity and selectivity. Benefiting from the significantly enhanced CO2 adsorption capability and promoted electron-rich nature by L-histidine integrity, the BH catalyst exhibits excellent FEformate in the unprecedented wide potential windows (>90 % within −0.1–−1.8 V and >95 % within −0.2–−1.6 V versus reversible hydrogen electrode, RHE). Excellent CO2RR performance can still be achieved under the low-concentration CO2 feeding (e.g., 20 vol.%). Besides, an extremely low onset potential of −0.05 VRHE (close to the theoretical thermodynamic potential of −0.02 VRHE) was detected by in situ ultraviolet-visible (UV-Vis) measurements, together with stable operation over 50 h with preserved FEformate of ≈95 % and high partial current density of 326.2 mA cm−2 at −1.0 VRHE.  相似文献   

5.
Main-group element indium (In) is a promising electrocatalyst which triggers CO2 reduction to formate, while the high overpotential and low Faradaic efficiency (FE) hinder its practical application. Herein, we rationally design a new In single-atom catalyst containing exclusive isolated Inδ+–N4 atomic interface sites for CO2 electroreduction to formate with high efficiency. This catalyst exhibits an extremely large turnover frequency (TOF) up to 12500 h−1 at −0.95 V versus the reversible hydrogen electrode (RHE), with a FE for formate of 96 % and current density of 8.87 mA cm−2 at low potential of −0.65 V versus RHE. Our findings present a feasible strategy for the accurate regulation of main-group indium catalysts for CO2 reduction at atomic scale.  相似文献   

6.
Solar-driven CO2 reduction reaction (CO2RR) is largely constrained by the sluggish mass transfer and fast combination of photogenerated charge carriers. Herein, we find that the photocatalytic CO2RR efficiency at the abundant gas-liquid interface provided by microdroplets is two orders of magnitude higher than that of the corresponding bulk phase reaction. Even in the absence of sacrificial agents, the production rates of HCOOH over WO3 ⋅ 0.33H2O mediated by microdroplets reaches 2536 μmol h−1 g−1 (vs. 13 μmol h−1 g−1 in bulk phase), which is significantly superior to the previously reported photocatalytic CO2RR in bulk phase reaction condition. Beyond the efficient delivery of CO2 to photocatalyst surfaces within microdroplets, we reveal that the strong electric field at the gas-liquid interface of microdroplets essentially promotes the separation of photogenerated electron-hole pairs. This study provides a deep understanding of ultrafast reaction kinetics promoted by the gas-liquid interface of microdroplets and a novel way of addressing the low efficiency of photocatalytic CO2 reduction to fuel.  相似文献   

7.
Anchoring transition metal (TM) atoms on suitable substrates to form single-atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.  相似文献   

8.
Constructing Cu single-atoms (SAs) catalysts is considered as one of the most effective strategies to enhance the performance of electrochemical reduction of CO2 (e-CO2RR) towards CH4, however there are challenges with activity, selectivity, and a cumbersome fabrication process. Herein, by virtue of the meta-position structure of alkynyl in 1,3,5-triethynylbenzene and the interaction between Cu and −C≡C−, a Cu SAs electrocatalyst (Cu−SAs/HGDY), containing low-coordination Cu−C2 active sites, was synthesized through a simple and efficient one-step method. Notably, this represents the first achievement of preparing Cu SAs catalysts with Cu−C2 coordination structure, which exhibited high CO2-to-CH4 selectivity (72.1 %) with a high CH4 partial current density of 230.7 mA cm−2, and a turnover frequency as high as 2756 h−1, dramatically outperforming currently reported catalysts. Comprehensive experiments and calculations verified the low-coordination Cu−C2 structure not only endowed the Cu SAs center more positive electricity but also promoted the formation of H•, which contributed to the outstanding e-CO2RR to CH4 electrocatalytic performance of Cu−SAs/HGDY. Our work provides a novel H⋅-transferring mechanism for e-CO2RR to CH4 and offers a protocol for the preparation of two-coordinated Cu SAs catalysts.  相似文献   

9.
The development of a non-noble metal cathode ORR catalyst with low cost, high activity and high stability has become an inevitable trend in MFC. The purpose of this study is to develop an efficient and stable Cu, N-codoped porous carbons catalysts with multi-pore structure for MFC. Herein, Cu, N-codoped porous carbons materials (Cu−NC−T) with high N content and multi-pore structure were successfully developed by co-pyrolysis with MOF-199 and melamine. By contrast, Cu-doped porous carbon (Cu−C−T) without melamine was synthesized using MOF-199 as template. The results showed that Cu−NC−T possessed a rough octahedral crystal with a unique multi-mesopore structure with pore centers of 3.4 nm and 11.2 nm, respectively. Owing to high N content, abundantly exposed Cu−Nx active sites and the multi-pore structure, Cu−NC−800 had a pronounced electrochemical ORR activity in neutral solution (onset potential and limiting current density were 0.161 V and −6.256 mA ⋅ cm−2), which were slightly lower than 20 wt % Pt/C (0.189 V and −6.479 mA ⋅ cm−2). Moreover, the MFC with Cu−NC−800 showed a power density of 662.8±3.6 mW ⋅ m−2, which was higher than that of Cu−C−800 (425.7±3.9 mW ⋅ m−2) and was slightly lower than that 20 wt % Pt/C (815.0±6.2 mW ⋅ m−2). The output voltage of MFC with Cu−NC−T had no obvious decreasing trend in 30 days, demonstrating that the Cu−NC−T had great stability.  相似文献   

10.
Late transition metal-bonded atomic oxygen radicals (LTM−O⋅) have been frequently proposed as important active sites to selectively activate and transform inert alkane molecules. However, it is extremely challenging to characterize the LTM−O⋅-mediated elementary reactions for clarifying the underlying mechanisms limited by the low activity of LTM−O⋅ radicals that is inaccessible by the traditional experimental methods. Herein, benefiting from our newly-designed ship-lock type reactor, the reactivity of iron-vanadium bimetallic oxide cluster anions FeV3O10 and FeV5O15 featuring with Fe−O⋅ radicals to abstract a hydrogen atom from C2−C4 alkanes has been experimentally characterized at 298 K, and the rate constants are determined in the orders of magnitude of 10−14 to 10−16 cm3 molecule−1 s−1, which are four orders of magnitude slower than the values of counterpart ScV3O10 and ScV5O15 clusters bearing Sc−O⋅ radicals. Theoretical results reveal that the rearrangements of the electronic and geometric structures during the reaction process function to modulate the activity of Fe−O⋅. This study not only quantitatively characterizes the elementary reactions of LTM−O⋅ radicals with alkanes, but also provides new insights into structure-activity relationship of M−O⋅ radicals.  相似文献   

11.
Electroreduction of CO2 into carbonaceous fuels or industrial chemicals using renewable energy sources is an ideal way to promote global carbon recycling. Thus, it is of great importance to develop highly selective, efficient, and stable catalysts. Herein, we prepared cobalt single atoms (Co SAs) coordinated with phthalocyanine (Co SAs-Pc). The anchoring of phthalocyanine with Co sites enabled electron transfer from Co sites to CO2 effectively via the π-conjugated system, resulting in high catalytic performance of CO2 electroreduction into CO. During the process of CO2 electroreduction, the Faradaic efficiency (FE) of Co SAs-Pc for CO was as high as 94.8 %. Meanwhile, the partial current density of Co SAs-Pc for CO was −11.3 mA cm−2 at −0.8 V versus the reversible hydrogen electrode (vs RHE), 18.83 and 2.86 times greater than those of Co SAs (−0.60 mA cm−2) and commercial Co phthalocyanine (−3.95 mA cm−2), respectively. In an H-cell system operating at −0.8 V vs RHE over 10 h, the current density and FE for CO of Co SAs-Pc dropped by 3.2 % and 2.5 %. A mechanistic study revealed that the promoted catalytic performance of Co SAs-Pc could be attributed to the accelerated reaction kinetics and facilitated CO2 activation.  相似文献   

12.
Electrochemical CO2 reduction reaction (CO2RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO2 molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu−Bi, enabling CO2RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO2 formation to activate CO2 molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III–V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.  相似文献   

13.
The development of efficient electrocatalysts with non-copper metal sites for electrochemical CO2 reduction reactions (eCO2RR) to hydrocarbons and oxygenates is highly desirable, but still a great challenge. Herein, a stable metal–organic framework (DMA)4[Sn2(THO)2] (Sn-THO, THO6− = triphenylene-2,3,6,7,10,11-hexakis(olate), DMA = dimethylammonium) with isolated and distorted octahedral SnO62− active sites is reported as an electrocatalyst for eCO2RR, showing an exceptional performance for eCO2RR to the CH4 product rather than the common products formate and CO for reported Sn-based catalysts. The partial current density of CH4 reaches a high value of 34.5 mA cm−2, surpassing most reported copper-based and all non-Cu metal-based catalysts. Our experimental and theoretical results revealed that the isolated SnO62− active site favors the formation of key *OCOH species to produce CH4 and can greatly inhibit the formation of *OCHO and *COOH species to produce *HCOOH and *CO, respectively.  相似文献   

14.
Developing highly efficient and stable photocatalysts for the CO2 reduction reaction (CO2RR) remains a great challenge. We designed a Z-Scheme photocatalyst with N−Cu1−S single-atom electron bridge (denoted as Cu-SAEB), which was used to mediate the CO2RR. The production of CO and O2 over Cu-SAEB is as high as 236.0 and 120.1 μmol g−1 h−1 in the absence of sacrificial agents, respectively, outperforming most previously reported photocatalysts. Notably, the as-designed Cu-SAEB is highly stable throughout 30 reaction cycles, totaling 300 h, owing to the strengthened contact interface of Cu-SAEB, and mediated by the N−Cu1−S atomic structure. Experimental and theoretical calculations indicated that the SAEB greatly promoted the Z-scheme interfacial charge-transport process, thus leading to great enhancement of the photocatalytic CO2RR of Cu-SAEB. This work represents a promising platform for the development of highly efficient and stable photocatalysts that have potential in CO2 conversion applications.  相似文献   

15.
We employed deuterium solid-state NMR techniques under static conditions to discern the details of the μs–ms timescale motions in the flexible N-terminal subdomain of Aβ1–40 amyloid fibrils, which spans residues 1–16. In particular, we utilized a rotating frame (R) and the newly developed time domain quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation measurements at the selectively deuterated side chains of A2, H6, and G9. The two experiments are complementary in terms of probing somewhat different timescales of motions, governed by the tensor parameters and the sampling window of the magnetization decay curves. The results indicated two mobile “free” states of the N-terminal domain undergoing global diffusive motions, with isotropic diffusion coefficients of 0.7−1 ⋅ 108 and 0.3−3 ⋅ 106ad2 s−1. The free states are also involved in the conformational exchange with a single bound state, in which the diffusive motions are quenched, likely due to transient interactions with the structured hydrophobic core. The conformational exchange rate constants are 2−3 ⋅ 105 s−1 and 2−3 ⋅ 104 s−1 for the fast and slow diffusion free states, respectively.  相似文献   

16.
The electrochemical reduction of CO2 (CO2RR) is a promising approach to maintain a carbon cycle balance and produce value-added chemicals. However, CO2RR technology is far from mature, since the conventional CO2RR electrocatalysts suffer from low activity (leading to currents <10 mA cm−2 in an H-cell), stability (<120 h), and selectivity. Hence, they cannot meet the requirements for commercial applications (>200 mA cm−2, >8000 h, >90 % selectivity). Significant improvements are possible by taking inspiration from nature, considering biological organisms that efficiently catalyze the CO2 to various products. In this minireview, we present recent examples of enzyme-inspired and enzyme-mimicking CO2RR electrocatalysts enabling the production of C1 products with high faradaic efficiency (FE). At present, these designs do not typically follow a methodical approach, but rather focus on isolated features of biological systems. To achieve disruptive change, we advocate a systematic design methodology that leverages fundamental mechanisms associated with desired properties in nature and adapts them to the context of engineering applications.  相似文献   

17.
Biomass derived carbon materials are widely available, cheap and abundant resources. The application of these materials as electrodes for rechargeable batteries shows great promise. To further explore their applications in energy storage fields, the structural design of these materials has been investigated. Hierarchical porous heteroatom-doped carbon materials (HPHCs) with open three-dimensional (3D) nanostructure have been considered as highly efficient energy storage materials. In this work, biomass soybean milk is chosen as the precursor to construct N, O co-doped interconnected 3D porous carbon framework via two approaches by using soluble salts (NaCl/Na2CO3 and ZnCl2/Mg5(OH)2(CO3)4, respectively) as hard templates. The electrochemical results reveal that these structures were able to provide a stable cycling performance (710 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 300 cycles for HPHC-a, and 610 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 200 cycles for HPHC-b) in Li-ion battery and Na-ion storage (210 mAh ⋅ g−1 at 0.1 A ⋅ g−1 after 900 cycles for HPHC-a) as anodes materials, respectively. Further comparative studies showed that these improvements in HPHC-a performance were mainly due to the honeycomb-like structure containing graphene-like nanosheets and high nitrogen content in the porous structures. This work provides new approaches for the preparation of hierarchically structured heteroatom-doped carbon materials by pyrolysis of other biomass precursors and promotes the applications of carbon materials in energy storage fields.  相似文献   

18.
19.
Bismuth-based materials have been recognized as promising catalysts for the electrocatalytic CO2 reduction reaction (ECO2RR). However, they show poor selectivity due to competing hydrogen evolution reaction (HER). In this study, we have developed an edge defect modulation strategy for Bi by coordinating the edge defects of bismuth (Bi) with sulfur, to promote ECO2RR selectivity and inhibit the competing HER. The prepared catalysts demonstrate excellent product selectivity, with a high HCOO Faraday efficiency of ≈95 % and an HCOO partial current of ≈250 mA cm−2 under alkaline electrolytes. Density function theory calculations reveal that sulfur tends to bind to the Bi edge defects, reducing the coordination-unsaturated Bi sites (*H adsorption sites), and regulating the charge states of neighboring Bi sites to improve *OCHO adsorption. This work deepens our understanding of ECO2RR mechanism on bismuth-based catalysts, guiding for the design of advanced ECO2RR catalysts.  相似文献   

20.
We investigate anionic [Co,CO2,nH2O] clusters as model systems for the electrochemical activation of CO2 by infrared multiple photon dissociation (IRMPD) spectroscopy in the range of 1250–2234 cm−1 using an FT-ICR mass spectrometer. We show that both CO2 and H2O are activated in a significant fraction of the [Co,CO2,H2O] clusters since it dissociates by CO loss, and the IR spectrum exhibits the characteristic C−O stretching frequency. About 25 % of the ion population can be dissociated by pumping the C−O stretching mode. With the help of quantum chemical calculations, we assign the structure of this ion as Co(CO)(OH)2. However, calculations find Co(HCOO)(OH) as the global minimum, which is stable against IRMPD under the conditions of our experiment. Weak features around 1590–1730 cm−1 are most likely due to higher lying isomers of the composition Co(HOCO)(OH). Upon additional hydration, all species [Co,CO2,nH2O], n≥2, undergo IRMPD through loss of H2O molecules as a relatively weakly bound messenger. The main spectral features are the C−O stretching mode of the CO ligand around 1900 cm−1, the water bending mode mixed with the antisymmetric C−O stretching mode of the HCOO ligand around 1580–1730 cm−1, and the symmetric C−O stretching mode of the HCOO ligand around 1300 cm−1. A weak feature above 2000 cm−1 is assigned to water combination bands. The spectral assignment clearly indicates the presence of at least two distinct isomers for n ≥2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号