首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of productive catalysts for the oxygen evolution reaction (OER) remains a major challenge requiring significant progress in both mechanism and material design. Conventionally, the thermodynamic barrier of lattice oxidation mechanism (LOM) is lower than that of absorbate evolution mechanism (AEM) because the former can overcome certain limitations. However, controlling the OER pathway from the AEM to the LOM by exploiting the intrinsic properties of the catalyst remains challenging. Herein, we incorporated F anions into the oxygen vacancies of spinel ZnCo2O4 and established a link between the electronic structure and the OER catalytic mechanism. Theoretical density calculations revealed that F upshifts the O 2p center and activates the redox capability of lattice O, successfully triggering the LOM pathway. Moreover, the high electronegativity of F anions is favourable for balancing the residual protonation, which can stabilize the structure of the catalyst.  相似文献   

2.
Oxygen electrocatalysis is of remarkable significance for electrochemical energy storage and conversion technologies, together with fuel cells, metal-air batteries, and water splitting devices. Substituting noble metal-based electrocatalysts by decidedly effective and low-cost metal-based oxygen electrocatalysts is imperative for the commercial application of these technologies. Herein, a novel strategy is presented to fabricate selenized and phosphorized porous cobalt-nickel oxide microcubes by using a sacrificial ZnO spherical template and the resulting microcubes are employed as an oxygen evolution reaction (OER) electrocatalyst. The selenized samples manifest desirable and robust OER performance, with comparable overpotential at 10 mA cm−2 (312 mV) as RuO2 (308 mV) and better activity when the current reaches 13.7 mA cm−2. The phosphorized samples exhibit core–shell structure with low-crystalline oxides inside amorphous phosphides, which ensures superior activity than RuO2 with the same overpotential (at 10 mA cm−2) yet lower Tafel slope. Such a surface doping method possibly will provide inspiration for engineering electrocatalysts applied in water oxidation.  相似文献   

3.
Developing cost-effective and highly efficient oxygen evolution reaction (OER) electrocatalysts is vital for the production of clean hydrogen by electrocatalytic water splitting. Here, three dimensional nickel-iron layered double hydroxide (NiFe LDH) nanosheet arrays are in-situ fabricated on self-supporting nitrogen doped graphited foam (NGF) via a one-step hydrothermal process under an optimized amount of urea. The as prepared NiFe LDH/NGF electrode exhibits a remarkable activity toward OER with a low onset overpotential of 233 mV and a Tafel slope of 59.4 mV dec−1 as well as a long-term durability. Such good performance is attributed to the synergy among the doping effect, the binder-free characteristic, and the architecture of the nanosheet array.  相似文献   

4.
Perovskite oxides are regarded as promising electrocatalysts for water splitting due to their cost-effectiveness, high efficiency and durability in the oxygen evolution reaction (OER). Despite these advantages, a fundamental understanding of how critical structural parameters of perovskite electrocatalysts influence their activity and stability is lacking. Here, we investigate the impact of structural defects on OER performance for representative LaNiO3 perovskite electrocatalysts. Hydrogen reduction of 700 °C calcined LaNiO3 induces a high density of surface oxygen vacancies, and confers significantly enhanced OER activity and stability compared to unreduced LaNiO3; the former exhibit a low onset overpotential of 380 mV at 10 mA cm−2 and a small Tafel slope of 70.8 mV dec−1. Oxygen vacancy formation is accompanied by mixed Ni2+/Ni3+ valence states, which quantum-chemical DFT calculations reveal modify the perovskite electronic structure. Further, it reveals that the formation of oxygen vacancies is thermodynamically more favourable on the surface than in the bulk; it increases the electronic conductivity of reduced LaNiO3 in accordance with the enhanced OER activity that is observed.  相似文献   

5.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

6.
Designing highly efficient electrocatalysts for oxygen evolution reaction (OER) plays a key role in the development of various renewable energy storage and conversion devices. In this work, we developed metallic Co4N porous nanowire arrays directly grown on flexible substrates as highly active OER electrocatalysts for the first time. Benefiting from the collaborative advantages of metallic character, 1D porous nanowire arrays, and unique 3D electrode configuration, surface oxidation activated Co4N porous nanowire arrays/carbon cloth achieved an extremely small overpotential of 257 mV at a current density of 10 mA cm−2, and a low Tafel slope of 44 mV dec−1 in an alkaline medium, which is the best OER performance among reported Co‐based electrocatalysts to date. Moreover, in‐depth mechanistic investigations demonstrate the active phases are the metallic Co4N core inside with a thin cobalt oxides/hydroxides shell during the OER process. Our finding introduces a new concept to explore the design of high‐efficiency OER electrocatalysts.  相似文献   

7.
Molybdenum doping is an effective way to improve the oxygen evolution reaction(OER) properties of catalysts, which can efficiently improve the electronic conductivity, mass transport process, and intrinsic activity of transition metal oxides or hydroxides, especially for those multi-component oxides with more abundant active sites. Herein, we have prepared a quaternary FeCoMoCu metal oxide on Cu foam(FeCoMoCuOx@Cu) as an efficient OER catalyst. As expected, FeCoMoCuOx@Cu could exhibit a low overpotential(252 mV at the current density of 10 mA/cm2) and exceptional stability(10000 cycles of CV scans or constant electrolysis for 48 h).  相似文献   

8.
氧析出反应(OER)是裂解水、二氧化碳还原、以及可充电的锌空电池等许多技术中重要的半反应,但受限于其迟缓的反应动力学,开发高效的氧析出催化剂迫在眉睫.在OER出反应中,性能较好的非贵金属催化剂主要是第四周期过渡金属的一些化合物,如氧化物、氢氧化物、硫化物、硒化物、磷化物等等.在这些材料中,镍铁双金属化合物被认为是最优的氧析出材料,尤其是镍铁层状双氢氧化物(Ni Fe-LDHs)它拥有较大的电化学活性面积以暴露较多活性位点,同时镍铁两种过渡金属元素存在协同效应,使得其具有良好的催化性能.然而,这一类材料的OER性能仍然有优化的空间.研究表明,将硫化物氧化得到的氢氧化物会有少量的硫元素残留,这种硫残留的氢氧化物拥有十分优异的OER性能.为了进一步认识硫的引入对Ni Fe-LDHs的OER行为的影响,本文通过水热法合成了硫掺杂的Ni Fe-LDHs,考察了硫的掺杂量对催化剂性能的影响,验证了微量硫的存在对Ni Fe-LDHs的OER性能的贡献.扫描电镜图片显示,水热合成的催化剂是厚度为几十纳米的薄片,拥有较高的比表面积, X射线荧光光谱分析证明合成的硫掺杂Ni Fe-LDHs中镍铁的元素比例为4:1,而且硫的掺杂量并不影响催化剂的形貌和其中镍铁元素比.X射线光电子能谱分析表明,硫原子的引入使得铁原子结合能降低,即硫与铁的相互作用部分降低了铁的价态,这种硫和铁的相互作用能够优化OER反应中间体OH*与O*在铁活性位点上的吸附自由能,降低氧析出反应的过电势.电化学测试表明,拥有0.43%的硫掺杂Ni Fe-LDHs拥有最好的氧析出性能, 10 m A cm^-1下超电势仅有257 m V, Tafel斜率61.5 m V dec^-1.此后,随着硫掺杂量的提升,其性能先保持稳定,随后有所下降.在稳定测试中,硫掺杂的镍铁层状双氢氧化物在10 m Acm-1电流密度下循环30 h后过电位仅衰减14 m V.在对稳定性测试后的催化剂进行表征表明,催化剂发生了轻微了变形,但这对性能的影响不大.综上,本文提供了一种简便的通过非金属元素掺杂调控过渡金属氧化物的结构和电子态的方法,有望为设计高活性OER电催化剂提供新思路.  相似文献   

9.
《中国化学快报》2020,31(9):2469-2472
The development of efficient and cost-effective electrocatalysts toward anodic oxygen evolution reaction (OER) is crucial for the commercial application of electrochemical water splitting. As the most promising electrocatalysts, the OER performances of nickel-iron-based materials can be further improved by introducing metalloid elements to modify their electron structures. Herein, we developed an efficient hybrid electrocatalyst with nickel-iron boride (NiFeB) as core and amorphous nickel-iron borate (NiFeBi) as shell (NiFeB@NiFeBi) via a simple aqueous reduction. The obtained NiFeB@NiFeBi exhibits a small overpotential of 237 mV at 10 mA/cm2 and Tafel slope of 57.65 mV/dec in 1.0 mol/L KOH, outperforming most of the documented precious-metal-free based electrocatalysts. Benefiting from the in situ formed amorphous NiFeBi layer, it shows excellent stability toward the oxygen evolution reaction (OER). These findings might provide a new way to design advanced precious-metal-free electrocatalysts for OER and the application of electrochemical water splitting.  相似文献   

10.
To date, only a few noble metal oxides exhibit the required efficiency and stability as oxygen evolution reaction (OER) catalysts under the acidic, high-voltage conditions that exist during proton exchange membrane water electrolysis (PEMWE). The high cost and scarcity of these catalysts hinder the large-scale application of PEMWE. Here, we report a novel OER electrocatalyst for OER comprised of uniformly dispersed Ru clusters confined on boron carbon nitride (BCN) support. Compared to RuO2, our BCN-supported catalyst shows enhanced charge transfer. It displays a low overpotential of 164 mV at a current density of 10 mA cm−2, suggesting its excellent OER catalytic activity. This catalyst was able to operate continuously for over 12 h under acidic conditions, whereas RuO2 without any support fails in 1 h. Density functional theory (DFT) calculations confirm that the interaction between the N on BCN support and Ru clusters changes the adsorption capacity and reduces the OER energy barrier, which increases the electrocatalytic activity of Ru.  相似文献   

11.
Developing earth-abundant, highly active and long-term durable electrocatalysts for oxygen evolution reaction (OER) is highly desirable and great challenging for large-scale industrial application of electrochemical water splitting. Herein, in-situ growth of uniform nanosheet arrays on nickel foam (NF) is hydrothermally achieved by varying feed ratios of FeIII and NiII salts. The feed ratio of the two active metals has significantly dominated both the morphological and electronic structures of the resultant electrocatalysts, leading to feed ratio-dependent volcano-type OER activity. The optimized Fe0.89Ni0.11-BDC/NF exhibits the best OER performance, affording a low overpotential of 220 mV to drive a current density of 50 mA · cm–2 with small Tafel slope of 44.8 mV · dec–1 and long-lasting stability over 20 hours. The synergistic effect from the FeIII and NiII species on both the morphological and electronic structure modulations have dramatically accelerated the reaction kinetics, responsible eventually for the enhanced OER activity. This work provides valuable information for nanostructured MOFs as efficient electrocatalysts.  相似文献   

12.
Extensive efforts to enhance the oxygen evolution reaction (OER) catalytic performance of transition metal oxides mainly concentrate on the extrinsic morphology tailoring, lattice doping, and electrode interface optimizing. Nevertheless, little room is left for performance improvement using these methods and an obvious gap still exists compared to the precious metal catalysts. In this work, a novel “mixed-valent cobalt modulation” strategy is presented to enhance the electrocatalytic OER of perovskite LaCoO3 (LCO) oxide. The valence transition of cobalt is realized by ethylenediamine post reduction procedure at room temperature, which further induces the variation of magnetic properties for LCO catalyst. The optimized LCO catalyst with Co2+/Co3+ of 1.98 % exhibits the best OER activity, and the overpotential at 10 mA cm−2 current density is decreased by 170 mV compared pristine LCO. Impressively, the ferromagnetic LCO catalyst can perform magnetic OER enhancement. By application of an external magnetic field, the overpotential of LCO at 10 mA cm−2 can be further decreased by 20 mV compared to that of under zero magnetic field, which arises from the enhanced energy states of electrons and accelerated electron transfer process driven by magnetic field. Our findings may provide a promising strategy to break the bottleneck for further enhancement of OER performance.  相似文献   

13.
Ion regulation strategy is regarded as a promising pathway for designing transition metal oxide-based electrocatalysts for oxygen evolution reaction (OER) with improved activity and stability. Precise anion conditioning can accurately change the anionic environment so that the acid radical ions (SO42−, PO32−, SeO42−, etc.), regardless of their state (inside the catalyst, on the catalyst surface, or in the electrolyte), can optimize the electronic structure of the cationic active site and further increase the catalytic activity. Herein, we report a new approach to encapsulate S atoms at the tetrahedral sites of the NaCl-type oxide NiO to form a tetraoxo-tetrahedral coordination structure (S-O4) inside the NiO (S-NiO -I). Density functional theory (DFT) calculations and operando vibrational spectroscopy proves that this kind of unique structure could achieve the S-O4 and Ni-S stable structure in S-NiO-I. Combining mass spectroscopy characterization, it could be confirmed that the S-O4 structure is the key factor for triggering the lattice oxygen exchange to participate in the OER process. This work demonstrates that the formation of tetraoxygen tetrahedral structure is a generalized key for boosting the OER performances of transition metal oxides.  相似文献   

14.
Electrocatalytic water oxidation is critically important for a wide range of emerging energy conversion devices. Co-based metal oxides are very promising candidates as high-performance oxygen evolution reaction (OER) catalysts. Here, it is shown that chemical oxidation of layered P2-NaxCoO2 could lead to compositionally tunable P2-NaxCoO2 with high OER activity. The optimal electrocatalytic activity emerges in a narrow range of sodium concentrations with Na0·28CoO2 exhibiting the lowest overpotential of 350 mV at 10 mA/cm2 and a Tafel slope of 29 mV/dec in 0.1 M NaOH electrolyte, outperforming the benchmark RuO2 catalyst and previous LiCoO2-based electrocatalysts. Electrochemical measurements and X-ray spectroscopic investigations reveal that chemically oxidized P2-NaxCoO2 catalysts are intrinsically active toward OER, arising from the abundant oxygen vacancies, increased Co-O covalency, and enhanced conductivity after deintercalation of the Na+. Our findings provide new insights into the design and synthesis of cost-effective catalysts toward efficient and durable OER.  相似文献   

15.
To realize the effective conversion of renewable energy through water decomposition, efficient electrocatalysts for the oxygen evolution reaction (OER) are essential. In this article, PBA@POM was successfully prepared with a Prussian blue analogue (PBA) as the initial structure. A facile hydrothermal process is reported for obtaining PBA@POM by etching the cubic PBA with a strong Brønsted acid, H3PMo12O40 (HPMo). The hollow cube structure not only exposes more active sites but also promotes electron transport, which results in excellent electrocatalytic activity for the OER. Compared with the PBA, which initially simply adhered to POM, the optimum PBA@POM hybrids display remarkably enhanced OER catalytic activity, with an almost constant overpotential of 440 mV at a current density of 10 mA cm?2 and a small Tafel slope (23.45 mV dec?1). The facilely prepared PBA@POM with good electrochemical activity and stability promises great potential for the OER.  相似文献   

16.
Rational design of highly active and durable electrocatalysts for oxygen reactions is critical for rechargeable metal–air batteries. Herein, we report the design and development of composite electrocatalysts based on transition metal oxide nanocrystals embedded in a nitrogen‐doped, partially graphitized carbon framework. Benefiting from the unique pomegranate‐like architecture, the composite catalysts possess abundant active sites, strong synergetic coupling, enhanced electron transfer, and high efficiencies in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The Co3O4‐based composite electrocatalyst exhibited a high half‐wave potential of 0.842 V for ORR, and a low overpotential of only 450 mV at the current density of 10 mA cm?2 for OER. A single‐cell zinc–air battery was also fabricated with superior durability, holding great promise in the practical implementation of rechargeable metal–air batteries.  相似文献   

17.
The cobalt–seleno-based coordination complex, [Co{(SePiPr2)2N}2], is reported with respect to its catalytic activity in oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solutions. An overpotential of 320 and 630 mV was required to achieve 10 mA cm−2 for OER and HER, respectively. The overpotential for OER of this CoSe4-containing complex is one of the lowest that has been observed until now for molecular cobalt(II) systems, under the reported conditions. In addition, this cobalt–seleno-based complex exhibits a high mass activity (14.15 A g−1) and a much higher turn-over frequency (TOF) value (0.032 s−1) at an overpotential of 300 mV. These observations confirm analogous ones already reported in the literature pertaining to the potential of molecular cobalt–seleno systems as efficient OER electrocatalysts.  相似文献   

18.
An iron oxide decorated nickel iron alloy nanoparticle/porous graphene hybrid exhibits high electrocatalytic activity and excellent durability toward oxygen evolution reaction (OER). It displays a low overpotential of 274 mV at 10 mA cm−2, and low Tafel slope of 37 mV dec−1, showing a superior performance to the state-of-the-art RuO2 OER electrocatalyst.  相似文献   

19.
Nowadays,Cu-based materials have attracted extensive attention as electrocatalysts,while the inherent reason of the filling of high anti-bonding state of Cu d band(3 d~(10)4 s~1) makes it difficult to hybridize with O2 p band of oxygen intermediates during the adsorption process of oxygen evolution reaction(OER).To increase the efficiency of Cu-based electrocatalysts,efforts have been made to optimize the electronic structures and to create surface defects and hierarchical nanostructures with more exposed accessible active sites.Herein,we report a facile method for preparing CuO electrocatalysts with hierarchical nanostructures using the Cu-alanine complex as a precursor through room-temperature chemical precipitation and subsequent calcination in air.Investigations of products obtained at different calcination temperatures reveal the relationship between OER activities and the material characteristics such as specific surface areas,crystal growth orientations,and element components.The product obtained at 500℃ exhibits the smallest overpotential of 290 mV in 1.0 mol/L KOH for electrocatalyzing OER.Combining with various characterizations of CuO electrocatalysts after OER activities,the possible catalytic mechanism and the influence factors of their OER performance are also discussed.  相似文献   

20.
开发碱性体系的高效低成本析氧电催化剂是由可再生能源转化制氢的关键。本研究通过在泡沫Ni基底上原位电化学沉积的方法制备了花瓣状NiFeOxHy和NiFeOxHy/rGO复合催化剂用于析氧反应。花瓣状的结构不仅明显提高了催化剂的比表面积,而且暴露了更多的层状边缘和缺陷,进而增加了催化剂的活性中心。还原氧化石墨烯的加入进一步提升了催化剂的电导和析氧电催化性能,通过优化NiFeOxHy/rGO在1 mol/L KOH溶液中的析氧性能为:过电位200 mV(10 mA/cm2)、Tafel斜率29.11 mV/decade,并且保持了较好的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号