首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells are antigen-presenting cells, which identify and process pathogens to subsequently activate specific T lymphocytes. To regulate the immune responses, DCs have to mature by the recognition of TLR ligands, TNFα or IFNγ. These ligands have been used as adjuvants to activate DCs in situ or in vitro, with toxic effects. It has been shown that some molecules affect the immune system, e.g., Masticadienonic acid (MDA) and 3α-hydroxy masticadienoic acid (3α-OH MDA) triterpenes naturally occurring in several medicinal plants, since they activate the nitric oxide synthase in macrophages and induce T lymphocyte proliferation. The DCs maturation induced by MDA or 3a-OH MDA was determined by incubating these cells with MDA or 3α-OH MDA, and their phenotype was afterwards analyzed. The results showed that only 3α-OH MDA was able to induce DCs maturation. When mice with melanoma were inoculated with DCs/3α-OH MDA, a decreased tumor growth rate was observed along with an extended cell death area within tumors compared to mice treated with DCs incubated with MDA. In conclusion, it is proposed that 3α-OH MDA may be an immunostimulant molecule. Conversely, it is proposed that MDA may be a molecule with anti-inflammatory properties.  相似文献   

2.
Dendritic cells (DCs) based cancer immunotherapy is largely dependent on adequate antigen delivery and efficient induction of DCs maturation to produce sufficient antigen presentation and ultimately lead to substantial activation of tumor-specific CD8+ T cells. Carbon nanotubes (CNTs) have attracted great attention in biomedicine because of their unique physicochemical properties. In order to effectively deliver tumor antigens to DCs and trigger a strong anti-tumor immune response, herein, a specific DCs target delivery system was assembled by using multi-walled carbon nanotubes modified with mannose which can specifically bind to the mannose receptor on DCs membrane. Ovalbumin (OVA) as a model antigen, could be adsorbed on the surface of mannose modified multi-walled carbon nanotubes (Man-MWCNTs) with a large drug loading content. This nanotube-antigen complex showed low cytotoxicity to DCs and was efficiently engulfed by DCs to induce DCs maturation and cytokine release in vitro, indicating that it could be a potent antigen-adjuvant nanovector of efficient antigen delivery for therapeutic purpose.  相似文献   

3.
Dendritic cells (DCs) are key modulators that shape the immune system. In mucosal tissues, DCs act as surveillance systems to sense infection and also function as professional antigen-presenting cells that stimulate the differentiation of naive T and B cells. On the basis of their molecular expression, DCs can be divided into several subsets with unique functions. In this review, we focus on intestinal DC subsets and their function in bridging the innate signaling and adaptive immune systems to maintain the homeostasis of the intestinal immune environment. We also review the current strategies for manipulating mucosal DCs for the development of efficient mucosal vaccines to protect against infectious diseases.  相似文献   

4.
Dendritic cells (DCs) play a key role in activating the immune response against invading pathogens as well as dying cells or tumors. Although the immune response can be initiated by the phagocytic activity by DCs, the molecular mechanism involved in this process has not been fully investigated. Trp-Lys-Tyr-Met-Val-Met-NH(2) (WKYMVM) stimulates the activation of phospholipase D (PLD) via Ca(2+) increase and protein kinase C activation in mouse DC cell line, DC2.4. WKYMVM stimulates the phagocytic activity, which is inhibited in the presence of N-butanol but not t-butanol in DC2.4 cells. Furthermore, the addition of phosphatidic acid, an enzymatic product of PLD activity, enhanced the phagocytic activity in DC2.4 cells. Since at least two of formyl peptide receptor (FPR) family (FPR1 and FPR2) are expressed in DC2.4 as well as in mouse bone marrow-derived dendritic cells, this study suggests that the activation of FPR family by WKYMVM stimulates the PLD activity resulting in phagocytic activity in DC2.4 cells.  相似文献   

5.
Checkpoint blockade immunotherapy (CBI) awakes a host innate immune system and reactivates cytotoxic T cells to elicit durable response in some cancer patients. Now, a cationic nanoscale metal–organic framework, W-TBP, is used to facilitate tumor antigen presentation by enabling immunogenic photodynamic therapy (PDT) and promoting the maturation of dendritic cells (DCs). Comprised of dinuclear WVI secondary building units and photosensitizing 5,10,15,20-tetra(p-benzoato)porphyrin (TBP) ligands, cationic W-TBP mediates PDT to release tumor associated antigens and delivers immunostimulatory CpG oligodeoxynucleotides to DCs. The enhanced antigen presentation synergizes with CBI to expand and reinvigorate cytotoxic T cells, leading to superb anticancer efficacy and robust abscopal effects with >97 % tumor regression in a bilateral breast cancer model.  相似文献   

6.
Checkpoint blockade immunotherapy (CBI) awakes a host innate immune system and reactivates cytotoxic T cells to elicit durable response in some cancer patients. Now, a cationic nanoscale metal–organic framework, W‐TBP, is used to facilitate tumor antigen presentation by enabling immunogenic photodynamic therapy (PDT) and promoting the maturation of dendritic cells (DCs). Comprised of dinuclear WVI secondary building units and photosensitizing 5,10,15,20‐tetra(p‐benzoato)porphyrin (TBP) ligands, cationic W‐TBP mediates PDT to release tumor associated antigens and delivers immunostimulatory CpG oligodeoxynucleotides to DCs. The enhanced antigen presentation synergizes with CBI to expand and reinvigorate cytotoxic T cells, leading to superb anticancer efficacy and robust abscopal effects with >97 % tumor regression in a bilateral breast cancer model.  相似文献   

7.
The selective activation of the immune system using nanoparticles as a drug delivery system is a promising field in cancer therapy. Block copolymers from HPMA and laurylmethacrylate‐co‐hymecromone‐methacrylate allow the preparation of multifunctionalized core‐crosslinked micelles of variable size. To activate dendritic cells (DCs) as antigen presenting cells, the carbohydrates mannose and trimannose are introduced into the hydrophilic corona as DC targeting units. To activate DCs, a lipophilic adjuvant (L18‐MDP) is incorporated into the core of the micelles. To elicit an immune response, a model antigen peptide (SIINFEKL) is attached to the polymeric nanoparticle—in addition—via a click reaction with the terminal azide. Thereafter, the differently functionalized micelles are chemically and biologically characterized. While the core‐crosslinked micelles without carbohydrate units are hardly bound by DCs, mannose and trimannose functionalization lead to a strong binding. Flow cytometric analysis and blocking studies employing mannan suggest the requirement of the mannose receptor and DC‐SIGN for effective micelle binding. It could be suppressed by blocking with mannan. Adjuvant‐loaded micelles functionalized with mannose and trimannose activate DCs, and DCs preincubated with antigen‐conjugated micelles induce proliferation of antigen‐specific CD8+ T cells.  相似文献   

8.
Photodynamic therapy (PDT) is a potentially immunogenic and FDA‐approved antitumor treatment modality that utilizes the spatiotemporal combination of a photosensitizer, light and oftentimes oxygen, to generate therapeutic cytotoxic molecules. Certain photosensitizers under specific conditions, including ones in clinical practice, have been shown to elicit an immune response following photoillumination. When localized within tumor tissue, photogenerated cytotoxic molecules can lead to immunogenic cell death (ICD) of tumor cells, which release damage‐associated molecular patterns and tumor‐specific antigens. Subsequently, the T‐lymphocyte (T cell)–mediated adaptive immune system can become activated. Activated T cells then disseminate into systemic circulation and can eliminate primary and metastatic tumors. In this review, we will detail the multistage cascade of events following PDT of solid tumors that ultimately lead to the activation of an antitumor immune response. More specifically, we connect the fundamentals of photochemically induced ICD with a proposition on potential mechanisms for PDT enhancement of the adaptive antitumor response. We postulate a hypothesis that during the course of the immune stimulation process, PDT also enriches the T‐cell repertoire with tumor‐reactive activated T cells, diversifying their tumor‐specific targets and eliciting a more expansive and rigorous antitumor response. The implications of such a process are likely to impact the outcomes of rational combinations with immune checkpoint blockade, warranting investigations into T‐cell diversity as a previously understudied and potentially transformative paradigm in antitumor photodynamic immunotherapy.  相似文献   

9.
The capacity of photodynamic therapy (PDT) to induce localized cell death and tissue damage suggests that when applied to tumors it could create a local depot of tumor-associated antigens, which would be available for uptake and presentation to the immune system, potentially leading to improved tumor control. Dendritic cells (DCs) are the most potent cells for antigen uptake, presentation, and stimulation of the immune system. However, it is unclear whether DCs would retain their viability and functional capacity for the requisite trafficking to draining lymph nodes when adoptively transferred in close temporal and anatomic proximity to the site of PDT-induced cytotoxicity. We conducted studies of combined PDT and adoptive DC therapy, "immunophototherapy," in a female, Fisher 344 rat orthotopic mammary tumor model. Using 5-aminolevulinic acid as a pro-drug, we demonstrated kinetically favorable biologic conversion to the photosensitive protoporphyrin IX, appropriate trafficking of syngeneic bone marrow-derived DCs injected into PDT-treated tumors within 15 min of completion of therapy, and improved survival over either modality alone. These data indicate that DCs rapidly administered into the site of PDT retain their viability and functional status, supporting the further evaluation of immunophototherapy strategies.  相似文献   

10.
A diaminophenyl derivative of hypocrellin B (SL052) has been developed as a photosensitizer for use in photodynamic therapy (PDT) of solid tumors. Testing SL052-PDT on mouse carcinoma and fibrosarcoma models revealed a typical response seen with clinically established photosensitizers featuring initial rapid tumor ablation with ensuing recurrence at rates dependent on photosensitizer/light doses. Elevated numbers of immune cells were found in lymph nodes draining SCCVII mouse squamous cell carcinomas treated by SL052-PDT (in particular T cells), and the accumulation of degranulating cytotoxic T cells was detected at the tumor-treated site. This indicates that a significant contribution to tumor cures is elicited by an antitumor adaptive immune response. Two different immunotherapy agents, γ-interferon and antibody blocking inhibitory FcγRIIB receptor, were both found to be highly effective in potentiating the curative effect of SL052-PDT with SCCVII tumors. Combining SL052-PDT with FcγRIIB-blocking antibody treatment caused a further increase in the number of cells in tumor-draining lymph nodes and in degranulating CD8+ cells, suggesting the amplification of the immune response induced by PDT. Vaccines consisting of SCCVII cells treated with SL052-PDT in vitro were effective in reducing growth of established subcutaneous SCCVII tumors. In conclusion, PDT mediated by SL052 is suitable to be integrated with various immunotherapy protocols.  相似文献   

11.
《中国化学快报》2022,33(8):4089-4095
With an intensive understanding of the mechanism of immune system, developing a therapeutic tumor vaccine is one of the most perspective strategy of cancer immunotherapy. In this study, we report a facile approach to prepare graphene oxide (GO)-based therapeutic cancer-nanovaccine. The model antigen (ovalbumin, OVA) and adjuvant (CpG ODN), are conjugated with GO-PEI nanosheet through electrostatic interaction. The addition of PEG can improve biocompatibility and prevent nanoparticle aggregation. The prepared GO-based nanovaccine, GO-PEI-OVA-PEG-CpG, exhibits good biocompatibility and low toxicity both in vivo and in vitro. More importantly, it can efficiently induce the maturation of dendritic cells (DCs), the enhancement of antigen cross-presentation ability, and the amplification of cytokine production of immune cells. Impressively, this nanovaccine shows a remarkable therapeutic effect against pre-established B16-OVA-melanoma tumors, which can significantly inhibit tumor growth and prolong the survival time of the OVA-expressed tumor-bearing mice. Moreover, combining GO-PEI-OVA-PEG-CpG with NLG919, an IDO-1 (indoleamine-2,3-dioxygenase) inhibitor which can regulate the tumor microenvironment, displays a synergistic therapeutic effect. These findings indicate the GO-PEI-OVA-PEG-CpG nanovaccine actively induces an antigen-specific antitumor immune response and it combined with NLG919 could achieve better therapeutic outcomes.  相似文献   

12.
Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model. The optimal ratios of DCs versus NK cells were 1:1 to 1:2. Immature DCs were mature with NK cells in the presence of lipopolysaccharide, which is TLR4 agonist, and further addition of IL-2 induced phenotypically and functionally mature bone marrow-derived DCs. These potent DCs exhibited not only high expression of several costimulatory molecules and high production of IL-12p40 and IL-12p70, but also high allogeneic T cells stimulatory capacity, and the induction of the high activities to generate tumor-specific CTLs. Consistently, vaccination with these DCs efficiently inhibited CT-26 tumor growth in mouse colon cancer model when compared to other vaccination strategies. Interestingly, combination therapy of these DC-based vaccines and with low-dose cyclophosphamide showed dramatic inhibition effects of tumor growth. These results suggest that the DCs maturated with NK cells in the presence of TLR agonist are potent inducer of antitumor immune responses in mouse model and may provide a new source of DC-based vaccines for the development of immunotherapy against colon cancer.  相似文献   

13.
We have investigated tumor immunological effects of photodynamic therapy (PDT) of liver metastases. Livers of Wag/Rij rats were inoculated with three tumors of a syngeneic rat colon carcinoma cell line, CC531. One tumor in each rat was illuminated, with or without previous administration of the photosensitizer metatetrahydroxyphenylchlorin (mTHPC). PDT was effective in causing necrosis of tumors, but it did not affect the growth rate of nearby, nonilluminated tumors in the liver. Immunological staining of tumors showed natural killer (NK) cells to be significantly lower in PDT-treated tumors than in control tumors (P < 0.05). T cells in PDT-treated tumors and in their margins were lower than in tumors that received only sensitizer or only illumination (P = 0.015) at day 2 after treatment but reappeared at the tumor margins from day 7 after treatment. For macrophages, a similar pattern was found. NK cells, T cells or macrophages in nonilluminated tumors in mTHPC-treated rats did not increase significantly when compared with tumors in rats without mTHPC treatment. These findings indicated that no antitumor effect of a systemic immune response was present, as measured by the effect of PDT on growth of distant tumors and the number of T lymphocytes, NK cells and macrophages in these tumors.  相似文献   

14.
Li X  He X  Liu B  Xu L  Lu C  Zhao H  Niu X  Chen S  Lu A 《Molecules (Basel, Switzerland)》2012,17(6):6557-6568
Radix Glycyrrhizae polysaccharide (GP), the most important component of Radix Glycyrrhizae, has been reported to have many immunopharmacological activities. However, the mechanism by which GP affects dendritic cells (DCs) has not been elucidated. In this study, we investigated the effect of GP on murine bone marrow-derived DCs and the potential pathway through which GP exerts this effect. Mononuclear cells (MNCs) were isolated from murine bone marrow and induced to become DCs by culturing with GM-CSF and IL-4. Six days later, DCs were divided into three groups: control group, GP group and LPS group. After 48 h of treatment, phenotypic figures and antigen uptake ability were determined by FACS analysis. The proliferation of DC-stimulated allogenic CD3+ T cells was detected by WST-1. IL-12 p70 and IFN-γ, which are secreted by DCs and CD3+ T cells respectively, were quantified by ELISA. Additionally, IL-12 p40 mRNA expression was determined by real-time PCR. Alterations in TLR4-related signaling pathways were examined by performing an antibody neutralization experiment. Treatment of DCs with GP resulted in the enhanced expression of the cell surface molecules CD80, CD86 and MHC I-A/I-E. GP also increased the production of IL-12 p70 by DCs in a time-dependent manner. The endocytosis of FITC-dextran by DCs was suppressed by GP administration. Furthermore, GP-treated DCs enhanced both the proliferation and IFN-γ secretion of allogenic CD3+ T cells. Finally, the effects of GP on DCs were partially reduced by using inhibitors of TLR4, NF-κB, p38 MAPK or JNK. In conclusion, GP can induce the maturation of DCs, and does so, in part, by regulating a TLR4-related signaling pathway.  相似文献   

15.
The surface of bovine serum‐derived exosomes (EXOs) are modified with α‐d ‐mannose for facile interaction with mannose receptors on dendritic cells (DCs) and for efficient delivery of immune stimulators to the DCs. The surface of the EXOs is modified with polyethylene glycol (PEG) without particle aggregation (≈50 nm) via the incorporation of 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine (DSPE) into the lipid layer of the EXO, compared to chemical conjugation by N‐hydroxysuccinimide activated PEG (NHS‐PEG). PEG modification onto the exosomal surface significantly decreases the non‐specific cellular uptake of the EXOs into the DCs. However, the EXOs with mannose‐conjugated PEG‐DSPE (EXO‐PEG‐man) exhibit excellent intracellular uptake into the DCs and boost the immune response by the incorporation of adjuvant, monophosphoryl lipid A (MPLA) within the EXO. After an intradermal injection, a higher retention of EXO‐PEG‐man is observed in the lymph nodes, which could be used for the efficient delivery of immune stimulators and antigens to the lymph nodes in vivo.  相似文献   

16.
Damage-associated molecular patterns (DAMPs) are danger signals (or alarmins) alerting immune cells through pattern recognition receptors (PRRs) to begin defense activity. Moreover, DAMPs are host biomolecules that can initiate a noninflammatory response to infection, and pathogen-associated molecular pattern (PAMPs) perpetuate the inflammatory response to infection. Many DAMPs are proteins that have defined intracellular functions and are released from dying cells after tissue injury or chemo-/radiotherapy. In the tumor microenvironment, DAMPs can be ligands for Toll-like receptors (TLRs) expressed on immune cells and induce cytokine production and T-cell activation. Moreover, DAMPs released from tumor cells can directly activate tumor-expressed TLRs that induce chemoresistance, migration, invasion, and metastasis. Furthermore, DAMP-induced chronic inflammation in the tumor microenvironment causes an increase in immunosuppressive populations, such as M2 macrophages, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs). Therefore, regulation of DAMP proteins can reduce excessive inflammation to create an immunogenic tumor microenvironment. Here, we review tumor-derived DAMP proteins as ligands of TLRs and discuss their association with immune cells, tumors, and the composition of the tumor microenvironment.Subject terms: Immune cell death, Cancer microenvironment  相似文献   

17.
Cancer immunotherapy has remarkably improved the therapeutic effect of melanoma and non-small cell lung cancer in the clinic. Nevertheless, it showed disappointing clinical outcomes for treating immunosuppressive tumors, wherein aggressive T cells are rather limited in tumor sites. Therefore, regulating the behavior of T cells in tumor sites to increase their attack ability for suppressing the immunosuppressive tumor is highly desirable. Inspiringly, we designed a dendritic cell-like biomimetic nanoparticle (DMSNs3@HA) to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors. In this work, anti-CD3 and anti-CD28 were responsible for mimicking dendritic cells to activate T cells, and anti-PD-1 for blocking the pathway of PD-1/PD-L1 to break the immune “brake”, which synergistically regulated the behavior of T cells to attack cancer cells. Experimental results indicated that DMSNs3@HA can effectively activate T cells and improve their immune response to significantly inhibit the growth of breast cancer. Moreover, it also proved that T cell activation combining immune checkpoint blocking induced the “1 + 1 >2” immunotherapy effect against immunosuppressive tumors. We expect that this strategy will provide new insights into tumor immunotherapy by modulating T cell behavior.

A dendritic cell-like biomimetic nanoparticle has been designed to regulate the behavior of T cells for improving the immunotherapy effect against immunosuppressive tumors.  相似文献   

18.
The migration of dendritic cells (DCs) to secondary lymphoid organs depends on chemoattraction through the interaction of the chemokine receptors with chemokines. However, the mechanism of how lymphoid chemokines attract DCs to lymphoid organs remains unclear. Here, we demonstrate the mechanism of DC migration in response to the lymphoid chemokine CCL21. CCL21-mediated DC migration is controlled by the regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) expression rather than through the activation of mitogen-activated protein kinases CCL21-exposed mature DCs (mDCs) exhibited decreased SERCA2 expression but not decreased phospholamban (PLB) or Hax-1 expression, which are known to be SERCA2-interacting proteins. In addition, CCL21 did not affect the mRNA levels of SERCA2 or its interacting protein Hax-1. Interestingly, SERCA2 expression was inversely related to DC migration in response to chemokine stimulation. The migratory capacity of CCL21-treated mDCs was decreased by the phospholipase C inhibitor U73122 and by the protein kinase C inhibitor BAPTA-AM. The migratory capacities of mDCs were increased in response to SERCA2 siRNA expression but were decreased by SERCA2 overexpression. In addition, DCs treated with a SERCA2-specific inhibitor (cyclopiazonic acid) had significantly increased migratory capacities as mDCs regardless of SERCA2 expression. Moreover, SERCA2 expression was dependent on DC maturation induced by cytokines or Toll-like receptor agonists. Therefore, the migratory capacities differed in differentially matured DCs. Taken together, these results suggest that SERCA2 contributes to the migration of CCL21-activated DCs as an important feature of the adaptive immune response and provide novel insights regarding the role of SERCA2 in DC functions.  相似文献   

19.
《中国化学快报》2022,33(9):4179-4184
Since antigen and adjuvant are rapid clearance in vivo, insufficient delivery to induce dendritic cells (DCs) maturation and cross-presentation, as well as limited migration efficiency of DCs to secondary lymph organs, greatly hinders the development of DCs-based immunotherapy. Herein, PCL-PEG-PCL polymersomes (PCEP-PS) as antigen and adjuvants delivery nanoplatforms (IMO-PS) were well-designed, which can electrostatically adsorb OVA antigen on the surface via DOTAP lipid and effectively encapsulate OVA antigen into the inner hydrophilic cavity to achieve both initial antigen exposure as well as slow and sustained antigen release, incorporate MPLA within the lipid layer to ligate with extracellular TLR4 of DCs as well as encapsulate IMQ in the hydrophobic membrane to ligate with intracellular TLR7/8 of DCs for activating synergistic immune responses via different signaling pathways. The IMO-PS significantly improved antigen uptake, promoted DCs maturation and cytokines production. DCs treated with IMO-PS could enhance migration into draining lymphoid nodes, and eventually induced antigen-specific CD8+ and CD4+ T cell responses and OVA-specific cytotoxic T lymphocyte (CTL) responses. Prophylactic vaccination of EG7-OVA tumor-bearing mice by IMO-PS + DCs significantly extended tumor-free time, effectively suppressed tumor growth, and greatly extended median survival time. The strategy may provide an effective nanoplatform for co-delivery antigen and dual-adjuvants in a spatio-temporally programmed manner for DC-based cancer immunotherapy.  相似文献   

20.
Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号