首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzyme-mimicking artificial nanomaterials often termed nanozymes have broad applications in many fields, including biosensing, pollutant degradation and cancer diagnosis. Herein, we introduce a plasmonic gold nanoparticle-modified Mn3O4 nanozyme (Mn3O4-Au). Visible or near infrared light excitation into the plasmonic absorption band of the surface-bound gold nanoparticles enhances the catalytic oxidation of tetramethylbenzidine (TMB). The mechanism of light-enhanced peroxidase activity is proposed based on the Mn3O4 conduction band mediated hot electron transfer from photoexcited gold nanoparticles to H2O2 which undergoes further oxygen-oxygen bond cleavage to yield hydroxyl radical. The surface decoration of plasmonic gold nanoparticles endows Mn3O4-Au to be a light-regulated nanozyme.  相似文献   

2.
Peroxidase-mimicking nanozymes such as Fe3O4 nanoparticles are promising substitutes for natural enzymes like horseradish peroxidase. However, most such nanozymes work efficiently only in acidic conditions. In this work, the influence of various liposomes on nanozyme activity was studied. By introducing negatively charged liposomes, peroxidase-mimicking nanozymes achieved oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in neutral and even alkaline conditions, although the activity towards anionic 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was inhibited. The Fe3O4 nanoparticles adsorbed on the liposomes without disrupting membrane integrity as confirmed by fluorescence quenching, dye leakage assays, and cryo-electron microscopy. Stabilization of the blue-colored oxidized products of TMB by electrostatic interactions was believed to be the reason for the enhanced activity. This work has introduced lipids to nanozyme research, and it also has practically important applications for using nanozymes at neutral pH, such as the detection of hydrogen peroxide and glucose.  相似文献   

3.
Nanozymes have attracted extensive interest owing to their high stability, low cost and easy preparation, especially in the field of cancer therapy. However, the relatively low catalytic activity of nanozymes in the tumor microenvironment (TME) has limited their applications. Herein, we report a novel nanozyme (PtFe@Fe3O4) with dual enzyme‐like activities for highly efficient tumor catalytic therapy. PtFe@Fe3O4 shows the intrinsic photothermal effect as well as photo‐enhanced peroxidase‐like and catalase‐like activities in the acidic TME, thereby effectively killing tumor cells and overcoming the tumor hypoxia. Importantly, a possible photo‐enhanced synergistic catalytic mechanism of PtFe@Fe3O4 was first disclosed. We believe that this work will advance the development of nanozymes in tumor catalytic therapy.  相似文献   

4.
Nanomaterials with enzyme‐like activity (nanozymes) attract significant interest owing to their applications in biomedical research. Particularly, redox nanozymes that exhibit glutathione peroxidase (GPx)‐like activity play important roles in cellular signaling by controlling the hydrogen peroxide (H2O2) level. Herein we report, for the first time, that the redox properties and GPx‐like activity of V2O5 nanozyme depends not only on the size and morphology, but also on the crystal facets exposed on the surface within the same crystal system of the nanomaterials. These results suggest that the surface of the nanomaterials can be engineered to fine‐tune their redox properties to act as “nanoisozymes” for specific biological applications.  相似文献   

5.
Nanomaterials‐based enzyme mimetics (nanozymes) have attracted considerable interest due to their applications in imaging, diagnostics, and therapeutic treatments. Particularly, metal‐oxide nanozymes have been shown to mimic the interesting redox properties and biological activities of metalloenzymes. Here we describe an efficient synthesis of MnFe2O4 nanomaterials and show how the morphology can be controlled by using a simple co‐precipitation method. The nanomaterials prepared by this method exhibit a remarkable oxidase‐like activity. Interestingly, the activity is morphology‐dependent, with nanooctahedra (NOh) exhibiting a catalytic efficiency of 2.21×109 m ?1 s?1, the highest activity ever reported for a nanozyme.  相似文献   

6.
Nanomaterials with enzyme-like activities, termed as nanozymes, have found wide applications in various fields. It has been a long-term aim to rationally design and synthesize highly active nanozymes and thus to further improve their application performance. Guided by the nanoconfinement effect, we confine cytochrome c (Cyt c) within a mesoporous metal–organic framework (MOF), PCN-222 nanoparticle (NP), forming a protein/MOF hybrid nanozyme, termed as Cyt c@PCN-222 NP. The confined Cyt c exhibits around 3–4-fold higher peroxidase-like activity than free Cyt c. Due to the increase in the activity of Cyt c, the Cyt c@PCN-222 NPs exhibit a quite low limit of detection (≈0.13 μM) towards H2O2. Sonication-induced H2O2 formation in water by using a lab-quipped ultrasonic cleaner can be sensitively probed, which suggests that H2O2-sensitive materials should be carefully handled during the utilization of ultrasonic equipment. We speculate that this nanoconfinement strategy can broaden our synthetic methodology for the rational design of nanozymes.  相似文献   

7.
The outstanding electrocatalytic activity of ruthenium (Ru) phosphides toward the hydrogen evolution reaction (HER) has received wide attention. However, the effect of the Ru phosphide phase on the HER performance remains unclear. Herein, a two-step method was developed to synthesize nanoparticles of three types of Ru phosphides, namely, Ru2P, RuP, and RuP2, with similar morphology, dimensions, loading density, and electrochemical surface area on graphene nanosheets by simply controlling the dosage of phytic acid as P source. Electrochemical tests revealed that Ru2P/graphene shows the highest intrinsic HER activity, followed by RuP/graphene and RuP2/graphene. Ru2P/graphene affords a current density of 10 mA cm−2 at an overpotential of 18 mV in acid media. Theoretical calculations further showed that P-deficient Ru2P has a lower free energy of hydrogen adsorption on the surface than other two, P-rich Ru phosphides (RuP, RuP2), which confirms the excellent intrinsic HER activity of Ru2P and is consistent with experiment results. The work reveals for the first time a clear trend of HER activity among three Ru phosphide phases.  相似文献   

8.
Proton‐coupled electron‐transfer oxidation of a RuII?OH2 complex, having an N‐heterocyclic carbene ligand, gives a RuIII?O. species, which has an electronically equivalent structure of the RuIV=O species, in an acidic aqueous solution. The RuIII?O. complex was characterized by spectroscopic methods and DFT calculations. The oxidation state of the Ru center was shown to be close to +3; the Ru?O bond showed a lower‐energy Raman scattering at 732 cm?1 and the Ru?O bond length was estimated to be 1.77(1) Å. The RuIII?O. complex exhibits high reactivity in substrate oxidation under catalytic conditions; particularly, benzaldehyde and the derivatives are oxidized to the corresponding benzoic acid through C?H abstraction from the formyl group by the RuIII?O. complex bearing a strong radical character as the active species.  相似文献   

9.
Proton dissociation of an aqua‐Ru‐quinone complex, [Ru(trpy)(q)(OH2)]2+ (trpy = 2,2′ : 6′,2″‐terpyridine, q = 3,5‐di‐t‐butylquinone) proceeded in two steps (pKa = 5.5 and ca. 10.5). The first step simply produced [Ru(trpy)(q)(OH)]+, while the second one gave an unusual oxyl radical complex, [Ru(trpy)(sq)(O?.)]0 (sq = 3,5‐di‐t‐butylsemiquinone), owing to an intramolecular electron transfer from the resultant O2? to q. A dinuclear Ru complex bridged by an anthracene framework, [Ru2(btpyan)(q)2(OH)2]2+ (btpyan = 1,8‐bis(2,2′‐terpyridyl)anthracene), was prepared to place two Ru(trpy)(q)(OH) groups at a close distance. Deprotonation of the two hydroxy protons of [Ru2(btpyan)(q)2(OH)2]2+ generated two oxyl radical Ru‐O?. groups, which worked as a precursor for O2 evolution in the oxidation of water. The [Ru2(btpyan)(q)2(OH)2](SbF6)2 modified ITO electrode effectively catalyzed four‐electron oxidation of water to evolve O2 (TON = 33500) under electrolysis at +1.70 V in H2O (pH 4.0). Various physical measurements and DFT calculations indicated that a radical coupling between two Ru(sq)(O?.) groups forms a (cat)Ru‐O‐O‐Ru(sq) (cat = 3,5‐di‐t‐butylcathechol) framework with a μ‐superoxo bond. Successive removal of four electrons from the cat, sq, and superoxo groups of [Ru2(btpyan)(cat)(sq)(μ‐O2?)]0 assisted with an attack of two water (or OH?) to Ru centers, which causes smooth O2 evolution with regeneration of [Ru2(btpyan)(q)2(OH)2]2+. Deprotonation of an Ru‐quinone‐ammonia complex also gave the corresponding Ru‐semiquinone‐aminyl radical. The oxidized form of the latter showed a high catalytic activity towards the oxidation of methanol in the presence of base. Three complexes, [Ru(bpy)2(CO)2]2+, [Ru(bpy)2(CO)(C(O)OH)]+, and [Ru(bpy)2(CO)(CO2)]0 exist as an equilibrium mixture in water. Treatment of [Ru(bpy)2(CO)2]2+ with BH4? gave [Ru(bpy)2(CO)(C(O)H)]+, [Ru(bpy)2(CO)(CH2OH)]+, and [Ru(bpy)2(CO)(OH2)]2+ with generation of CH3OH in aqueous conditions. Based on these results, a reasonable catalytic pathway from CO2 to CH3OH in electro‐ and photochemical CO2 reduction is proposed. A new pbn (pbn = 2‐pyridylbenzo[b]‐1,5‐naphthyridine) ligand was designed as a renewable hydride donor for the six‐electron reduction of CO2. A series of [Ru(bpy)3‐n(pbn)n]2+ (n = 1, 2, 3) complexes undergoes photochemical two‐ (n = 1), four‐ (n = 2), and six‐electron reductions (n = 3) under irradiation of visible light in the presence of N(CH2CH2OH)3. © 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 9: 169–186; 2009: Published online in Wiley InterScience ( www.interscience.wiley.com ) DOI 10.1002/tcr.200800039  相似文献   

10.
Electron paramagnetic resonance (EPR) and infrared (IR) spectroscopy were used to study the formation of ruthenium and adsorbed species appearing on the catalyst upon the adsorption of CO and O2 on 1.37 wt% Ru/MgF2 catalysts derived from Ru3(CO)12. The presence of Ru x+ sites in spite of a reductive H2 treatment at 673 K was observed by EPR and IR spectroscopy beside metallic Ru0 species. Both IR and EPR results provided clear evidence for the interaction between surface ruthenium and probe molecules. The IR spectra recorded after admission of CO showed a band at approx. 2000 cm−1, due to linearly adsorbed CO on Ru0/MgF2 and two bands at higher frequencies (approx. 2140 and approx. 2070 cm−1), related to CO on oxidized Ru n+ species, e.g., to Ru(CO)3 complex with Ru in the 1+ and/or 2+ state of oxidation and Ru(CO)2 with Ru in the 3+ and/or 4+ state of oxidation. A weak anisotropic EPR signal with g = 2.017 and g = 2.003 is due to O 2 radicals and a formation of Ru4+-O 2 complex is postulated. The Ru3+ appears to oxidize to Ru4+ and the resulting dioxygen anion is coordinated to the ruthenium. The strong, isotropic EPR signal at g 0 = 2.003 detected upon admission of CO is attributed to CO radical anion rather than to any ruthenium carbonyl complexes.  相似文献   

11.
Coordination of a redox‐active pyridine aminophenol ligand to RuII followed by aerobic oxidation generates two diamagnetic RuIII species [ 1 a (cis) and 1 b (trans)] with ligand‐centered radicals. The reaction of 1 a / 1 b with excess NaN3 under inert atmosphere resulted in the formation of a rare bis(nitrido)‐bridged trinuclear ruthenium complex with two nonlinear asymmetrical Ru‐N‐Ru fragments. The spontaneous reduction of the ligand centered radical in the parent 1 a / 1 b supports the oxidation of a nitride (N3?) to half an equivalent of N2. The trinuclear omplex is reactive toward TEMPO‐H, tin hydrides, thiols, and dihydrogen.  相似文献   

12.
Conventional nanozymes often possess low active site density. Pursuing effective strategies for constructing highly active single-atomic nanosystems with maximum atom utilization efficiency is exceptionally attractive. Herein, we develop a facile “missing-linker-confined coordination” strategy to fabricate two self-assembled nanozymes, i.e., conventional nanozyme (NE) and single-atomic nanozyme (SAE), which respectively consist of Pt nanoparticles and single Pt atoms as active catalytic sites anchored in metal–organic frameworks (MOFs) with encapsulated photosensitizers for catalase-mimicking enhanced photodynamic therapy. Compared to a Pt nanoparticle-based conventional nanozyme, a Pt single-atomic nanozyme shows enhanced catalase-mimicking activity in generating oxygen for overcoming tumor hypoxia, thus exhibiting a more efficient reactive oxygen species generation and high tumor inhibition rate.  相似文献   

13.
By means of density functional theory computations, we examine the stability and CO oxidation activity of single Ru on CeO2(111), TiO2(110) and Al2O3(001) surfaces. The heterogeneous system Ru1/CeO2 has very high stability, as indicated by the strong binding energies and high diffusion barriers of a single Ru atom on the ceria support, while the Ru atom is rather mobile on TiO2(110) and Al2O3(001) surfaces and tends to form clusters, excluding these systems from having a high efficiency per Ru atom. The Ru1/CeO2 exhibits good catalytic activity for CO oxidation via the Langmuir–Hinshelwood mechanism, thus is a promising single‐atom catalyst.  相似文献   

14.
Preparation, Properties, and Phase Relations of Ru3Sn15O14 Coexistence relations in the system Ru/Sn/O have been investigated by X‐ray measurements of powder mixtures annealed in the region of 1173–1273 K. Thermodynamic data of Ru2Sn3, Ru3Sn7, and Ru3Sn15O14 were obtained by EMF measurements. Phase diagrams calculated with these data are in good agreement with experimental results. Only one phase, Ru3Sn15O14, exists in the ternary system between 973 and 1273 K. Red translucend single crystals were obtained from a tin melt. Polycrystalline powder was prepared by solid state reaction of a mixture of Ru3Sn7, SnO2, and Sn with molar ratio 1:7:1 at 1173 K. Ru3Sn15O14 is a p‐type semiconductor, EA = 0.50(5) eV, as conductivity and thermopower measurements show. Mössbauer investigations confirm the existence of three different tin surroundings.  相似文献   

15.
The integration of nanozyme and natural enzyme for cascade reactions has attracted great attention due to their huge potential applications in detection, biomedicine, and catalysis. Here the novel cascade bio-platforms were fabricated by using spherical poly[(2-methacryloyloxyethyl)trimethyl ammonium chloride] (PMOTA) brushes (SPB) as nanoreactors to prepare platinum nanoparticles in situ and as nanocarriers to immobilize glucose oxidase (GOX). The generated Pt nanoparticles possess high stability and peroxidase-like properties, which can catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2 to generate blue colored oxidized TMB (oxTMB). And the absorbed GOX can specifically catalyze the oxidation of glucose into gluconic acid and H2O2, while the produced H2O2 is subsequently catalyzed by the Pt nanozymes. Thus, the co-immobilized Pt nanozymes and GOX within SPB (SPB@Pt@GOX) acted as effective biosensors for colorimetric detection of glucose showing high selectivity and great feasibility. This work demonstrates a facile and general strategy to use SPB as bio-platforms to integrate nanozymes and natural enzymes for cascade reactions.  相似文献   

16.
Ceria (CeO2) with phosphatase-like activity is widely recognized as one of the promising nanozymes. In general, shrinkage of the sizes of CeO2 can generate large active surface areas for dephosphorylation reactions. However, synthesizing CeO2 with an ultra-small structure while retaining its surface activity and avoiding its aggregation for use in non-redox biological applications has been a continuous challenge. Herein, a phosphatase-mimicking nanozyme CeO2 with ultra-small, excellent dispersibility, and accessibility, and largely exposed {111} facet was synthesized via a facile one-pot approach. In contrast to previous reports, which focus on enhancing the ·OH-induced cellular damage by peroxidase- or oxidase-like activity of CeO2, the present work demonstrates the phosphatase-like activity of CeO2 for boosting ferroptosis by disrupting cellular homeostasis. Cancer cells require high levels of nicotinamide adenine dinucleotide phosphate (NADP(H)) to enhance GSH synthesis and resist to ferroptosis. By virtue of the phosphatase-like activity, the obtained CeO2 could sustainably dephosphorylate NADP(H) and effectively inhibit the intracellular biosynthesis of GSH. Our results showed that using CeO2 as a phosphatase-mimicking nanozyme to deplete NADP(H) and its synthetic precursor glucose-6-phosphate (G6P) could attenuate the repair mechanisms under oxidative stress via indirectly inhibiting the supply of intracellular GSH and enhancing the occurrence of ferroptosis. The finding offers new insights into the regulation of ferroptosis by high-efficiency non-redox nanozymes, which could pave the way for the development of phosphatase-mimicking nanozymes.  相似文献   

17.
The polymetallic [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 complex (bpy = 2,2′-bipyridine, BPE = trans-1,2-bis(4-pyridil)ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru3O] moiety with a [Ru(bpy)2(BPE)Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl]2+ doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)2(BPE)] charge-transfer bands and to the [Ru3O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at −1.07 V, 0.13 V, 1.17 V, 2.91 V and −1.29 V (vs SHE) assigned to the [Ru3O]−1/0/+1/+2/+3 and to the bpy0/−1 redox processes; also a wave is observed at 0.96 V, assigned to the Ru+2/+3 pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the π-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.  相似文献   

18.
RuII‐ and RuIII‐substituted α‐Keggin‐type phosphotungstates with a dimethyl sulfoxide (DMSO) ligand, [PW11O39RuIIDMSO]5– ( 1 ) and [PW11O39RuIIIDMSO]4– ( 2 ), were synthesized. Compound 1 was prepared by reaction of [PW11O39]7– with [RuII(DMSO)4]Cl2 in water at 125 °C under hydrothermal conditions and was isolated as a cesium salt. Compound 2 was prepared by reaction of 1 with bromine in water at 60 °C and was isolated as a cesium salt. The compounds were characterized by cyclic voltammetry, elemental analysis, UV/Vis, IR,31P NMR, 183W NMR, 1H NMR, and XANES (Ru K‐edge and L3‐edge)spectroscopic methods. Single crystal structural analysis of 1 revealed that RuII is incorporated in the α‐Keggin framework and coordinated by DMSO through a Ru–S bond. Cyclic voltammetry of 1 indicated that the incorporated RuII‐DMSO is reversibly oxidizable to the RuIII‐DMSO derivative 2 . Compound 1 showed catalytic activity for water oxidation in the presence of cerium ammonium nitrate as an oxidant.  相似文献   

19.
The deficient catalytic activity of nanozymes and insufficient endogenous H2O2 in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS2 nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS2@CA) is presented that is made from few-layer MoS2 nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H2O2 self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.  相似文献   

20.
We report the first use of iron oxide magnetic nanoparticles (Fe3O4 MNPs) as a novel, alternative, simple and reliable agents for colorimetric measurement of radical scavenging activity of the antioxidants. In the presence of H2O2 and the peroxidase colorimetric substrate, Fe3O4 MNPs catalyzed the oxidation of colorless peroxidase substrate to form colorimetric products via the generation of hydroxyl radicals. After adding antioxidants, the catalytic activity of Fe3O4 MNPs was inhibited due to scavenging of hydroxyl radicals by the antioxidants, producing less colorimetric products resulting in the reduction of color intensity. Two model antioxidant standards including gallic acid (GA) and epigallocatechin gallate (EGCG) were successfully evaluated for their hydroxyl radical scavenging activity using the developed assay. The performance of the developed method was validated against traditional antioxidant assays for 9 tea samples. Using the Spearman rank correlation coefficient method, the antioxidant activity of tea samples obtained from the Fe3O4 MNP assay correlated well with the traditional assays at the 95% confidence level. Furthermore, the developed assay was successfully carried out on a paper-based device to provide for high throughput analysis with low amounts of reagents and sample consumption and low analysis cost for screening of radical scavenging activity of the antioxidants. The results from the analysis of antioxidant activity in tea samples obtained from the Fe3O4 MNP paper-based assay were not significantly different to those obtained from the developed Fe3O4 MNP spectrophotometric assay indicating that the developed assay was also applicable in a low-cost analysis platform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号