首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Madhukalya  B.  Das  R.  Hosseini  K.  Baleanu  D.  Hincal  E. 《Nonlinear dynamics》2023,111(9):8659-8671

The formation of ion-acoustic solitons (IASs) in an unmagnetized plasma with negative ions has been investigated through the KdV equation in both the situations \(Q^{\prime}\left( { = m_{j} /m_{i} = {\text{negative}}\;{\text{to}}\;{\text{positive}}\;{\text{ion}}\;{\text{mass}}\;{\text{ratio}}} \right)\) less and greater than one and the mKdV equation only for \(Q^{\prime} > 1\). The existence of both KdV and mKdV solitons has been established for \(\alpha \left( { = {\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\; > \;\beta \left( { = {\text{negative}}\;{\text{ion}}\;{\text{to}}\;{\text{electron}}\;{\text{temperature}}\;{\text{ratio}}} \right)\) and \(\alpha < \beta\), which is the new outcome of the current investigation. Furthermore, the existence of both compressive and rarefactive solitons for \(Q^{\prime} > 1\) and \(Q^{\prime} < 1\) has been demonstrated.

  相似文献   

2.
Liu  Guang  Lu  Zhong-Rong  Wang  Li  Liu  Ji-ke 《Nonlinear dynamics》2021,103(2):1529-1551

In this paper, a new semi-analytical method, namely the time-domain minimum residual method, is proposed for the nonlinear problems. Unlike the existing approximate analytical method, this method does not depend on the small parameter and can converge to the exact analytical solutions quickly. The method is mainly threefold. Firstly, the approximate analytical solution of the nonlinear system \({\varvec{F\left( \ddot{x},{\dot{x}},x\right) }}={\varvec{0}}\) is expanded as the appropriate basis function and a set of unknown parameters, i.e., \({\varvec{x(t)}}\approx \sum _{i=0}^{N}{\varvec{a_i\chi _i(t)}}\). Then, the problem of solving analytical solutions is transformed into finding a set of parameters so that the residual \({\varvec{R}}={\varvec{F}}\left( \sum _{i=0}^{N}a_i\ddot{\chi }_i,\sum _{i=0}^{N}a_i{\dot{\chi }}_i,\sum _{i=0}^{N}a_i\chi _i\right) \) is minimum over a period, i.e., \(\underset{{\varvec{a}}\in {\mathscr {A}}}{\min }\int _{0}^T {\varvec{R}}({\varvec{a}},t)^{T} {\varvec{R}}({\varvec{a}},t) \mathrm {d} t\). The nonlinear equation \({\varvec{F\left( \ddot{x},{\dot{x}},x\right) }}={\varvec{0}}\) is regarded as the objective function to optimize, and the process of solving the analytic solution is transformed into a nonlinear optimization process. Finally, the optimization process is iteratively solved by the enhanced response sensitivity approach. Four numerical examples are employed to verify the feasibility and effectiveness of the proposed method.

  相似文献   

3.
The influence of the Prandtl number on heat transfer and pressure drop characteristics of artificially roughened test sections has been investigated experimentally in the Prandtl number range from 3 to 180. For integral roughenesses and fully roughened test sections the efficiency η=ε Nu /ε ζ can be described by the Prandtl number and the roughness parameter \(k_{\text{S}}^ + = Re{\text{(}}k_{\text{S}} /d_{\text{h}} )\sqrt \zeta /8\) . The relation between the efficiency η, the Prandtl numberPr and the roughness parameterk s + can be expressed by the following empirical relation: $$\eta = \log \frac{{Pr^{{\text{0,33}}} }}{{k_{\text{S}}^{ + {\text{ 0,243}}} }} - 0,32 \cdot 10^{ - 3} k_{\text{S}}^ + {\text{ log }}Pr + {\text{1,25}}{\text{.}}$$ With this relation for the heat transfer and friction characteristics of smooth and rough channels it is possible to calculate the increase of heat transfer for rough channels by means of pressure drop measurements which are necessary to determine the friction factor ζ and the equivalent sand roughness depth; provided that heat transfer and friction characteristics of the respective smooth channel are known.  相似文献   

4.
This paper presents a numerical solution for wavy laminar film-wise condensation on vertical walls. Integral method is achieved based on the recently developed simple wave equations. Solutions are obtained for ranges of dimensionless groups as follows: $$1.5 \leqslant \left( {Pr = \frac{{^{\mu C} p}}{k}} \right) \leqslant 6.0$$ $$10 \leqslant \left( {G = \frac{{^h fg}}{{^{C_p \Delta T} }}} \right) \leqslant 400$$ $$100 \leqslant \left( {S = \left( {\frac{{\sigma ^2 \rho }}{{g_\rho \mu ^4 }}} \right)^{{1 \mathord{\left/ {\vphantom {1 5}} \right. \kern-\nulldelimiterspace} 5}} } \right) \leqslant 400$$ $$1000 \leqslant \left( {L = \frac{{{\rm H}_t }}{{^\delta cr}}} \right) \leqslant 10000$$ . Such ranges cover the expected situations in industrial applications. It is found that the Reynolds number (Re=hLΔTHt/hfg) is a linear function of L on the log-log plane. It is also relatively insensitive to small variations of Pr at high values of this number. At situations where G less than 200 the Re appears to be dependent on S. Agreement with experimental observation is improved over that obtained from previous analytical theories.  相似文献   

5.
Let A be a positive self-adjoint elliptic operator of order 2m on a bounded open set Ω ?? k . We consider the variational eigenvalue problem (P) $$\mathcal{A}u = \lambda r{\text{(}}x{\text{)}}u,{\text{ }}x \in \Omega ,$$ , with Dirichlet or Neumann boundary conditions; here the “weight” r is a real-valued function on Ω which is allowed to change sign in Ω or to be discontinuous. Such problems occur naturally in the study of many nonlinear elliptic equations. In an earlier work [Trans. Amer. Math. Soc. 295 (1986), pp. 305–324], we have determined the leading term for the asymptotics of the eigenvalues λ of (P). In the present paper, we obtain, under more stringent assumptions, the corresponding remainder estimates. More precisely, let N ±(λ) be the number of positive (respectively, negative) eigenvalues of (P) less than λ>0 (respectively, greater than λ<0); set r ± = max (±r, 0) and \(\Omega _ \pm = {\text{\{ }}x \in \Omega :r{\text{(}}x{\text{)}} \gtrless {\text{0\} }}\) . We show that $$N^ \pm {\text{(}}\lambda {\text{) = }}\mathop \smallint \limits_{\Omega _ \pm } {\text{(}}\lambda r{\text{(}}x{\text{))}}^{\frac{k}{{{\text{2}}m}}} {\text{ }}\mu \prime _\mathcal{A} {\text{(}}x{\text{) }}dx + 0{\text{(}}\left| \lambda \right|^{\frac{{k - 1}}{{{\text{2}}m}} + \delta } {\text{) as }}\lambda \to \pm \infty {\text{,}}$$ , where δ>0 and μ A (x) is the Browder-Gårding density associated with the principal part of A. How small δ can be chosen depends on the “regularity” of the leading coefficients of A, r ±, and of the boundary of Ω ±. These results seem to be new even for positive weights.  相似文献   

6.
In the paper [Large-amplitude periodic solutions for differential equations with delayed monotone positive feedback, JDDE 23 (2011), no. 4, 727–790], we have constructed large-amplitude periodic orbits for an equation with delayed monotone positive feedback. We have shown that the unstable sets of the large-amplitude periodic orbits constitute the global attractor besides spindle-like structures. In this paper we focus on a large-amplitude periodic orbit \({\mathcal {O}}_{p}\) with two Floquet multipliers outside the unit circle, and we intend to characterize the geometric structure of its unstable set \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \). We prove that \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) is a three-dimensional \(C^{1}\)-submanifold of the phase space and admits a smooth global graph representation. Within \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \), there exist heteroclinic connections from \({\mathcal {O}}_{p}\) to three different periodic orbits. These connecting sets are two-dimensional \(C^{1}\)-submanifolds of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) and homeomorphic to the two-dimensional open annulus. They form \(C^{1}\)-smooth separatrices in the sense that they divide the points of \({\mathcal {W}}^{u}\left( {\mathcal {O}}_{p}\right) \) into three subsets according to their \(\omega \)-limit sets.  相似文献   

7.
Particle image velocimetry (PIV) has been used to investigate transitional and turbulent flow in a randomly packed bed of mono-sized transparent spheres at particle Reynolds number, \(20<{{ Re}}_{\mathrm{p}}< 3220\). The refractive index of the liquid is matched with the spheres to provide optical access to the flow within the bed without distortions. Integrated pressure drop data yield that Darcy law is valid at \({{ Re}}_{\mathrm{p}} \approx 80\). The PIV measurements show that the velocity fluctuations increase and that the time-averaged velocity distribution start to change at lower \({{ Re}}_{\mathrm{p}}\). The probability for relatively low and high velocities decreases with \({{ Re}}_{\mathrm{p}}\) and recirculation zones that appear in inertia dominated flows are suppressed by the turbulent flow at higher \({{ Re}}_{\mathrm{p}}\). Hence there is a maximum of recirculation at about \({{ Re}}_{\mathrm{p}} \approx 400\). Finally, statistical analysis of the spatial distribution of time-averaged velocities shows that the velocity distribution is clearly and weakly self-similar with respect to \({{ Re}}_{\mathrm{p}}\) for turbulent and laminar flow, respectively.  相似文献   

8.
9.
We construct an optical lens in the (x, y)-plane which focuses two pairs of points, i.e., all the rays from a given point X i are focused by the lens at a given point y i , for i = 1, 2. The points X 1, X 2, Y 1, Y 2 lie on the x-axis and the lens has the form $$\left\{ {\gamma _{\text{1}} {\text{ }} + {\text{ }}f_{\text{1}} {\text{(}}y{\text{) }}\underline \leqslant {\text{ }}x{\text{ }}\underline \leqslant {\text{ }}\gamma _{\text{2}} {\text{ }} + {\text{ }}f_{\text{2}} {\text{(}}y{\text{)}},{\text{ }}\left| y \right|{\text{ }}\underline \leqslant {\text{ }}y_{\text{0}} } \right\}$$ where γ 1, γ 2 are given, and f i (0) = 0, f i (?y) = f i (y). We then let X 2X 1, Y 2Y 1 and investigate the limiting lens. We show that this limit is generally not a symmetric lens, i.e., f 1 + f 2 ? 0.  相似文献   

10.
In this study, steady-state turbulent forced flow and heat transfer in a horizontal smooth rectangular duct both experimentally and numerically investigated. The study was carried out in the transition to turbulence region where Reynolds numbers range from 2,323 to 9,899. Flow is hydrodynamically and thermally developing (simultaneously developing flow) under uniform bottom surface temperature condition. A commercial CFD program Ansys Fluent 12.1 with different turbulent models was used to carry out the numerical study. Based on the present experimental data and three-dimensional numerical solutions, new engineering correlations were presented for the heat transfer and friction coefficients in the form of $ {\text{Nu}} = {\text{C}}_{2} {\text{Re}}^{{{\text{n}}_{ 1} }} $ and $ {\text{f}} = {\text{C}}_{3} {\text{Re}}^{{{\text{n}}_{3} }} $ , respectively. The results have shown that as the Reynolds number increases heat transfer coefficient increases but Darcy friction factor decreases. It is seen that there is a good agreement between the present experimental and numerical results. Examination of heat and mass transfer in rectangular cross-sectioned duct for different duct aspect ratio (α) was also carried out in this study. Average Nusselt number and average Darcy friction factor were expressed with graphics and correlations for different duct aspect ratios.  相似文献   

11.
A model is considered for a spatially distributed population of male and female individuals that mate and reproduce only once in their life during a very short reproductive season. Between birth and mating, females and males move by diffusion on a bounded domain \(\Omega \) under Dirichlet boundary conditions. Mating and reproduction are described by a (positively) homogeneous function (of degree one). We identify a basic reproduction number \({\mathcal {R}}_0\) that acts as a threshold between extinction and persistence. If \({\mathcal {R}}_0 <1\), the population dies out while it persists (uniformly weakly) if \({\mathcal {R}}_0 > 1\). \({\mathcal {R}}_0\) is the cone spectral radius of a bounded homogeneous map.  相似文献   

12.
The differential equation considered is \(y'' - xy = y|y|^\alpha \) . For general positive α this equation arises in plasma physics, in work of De Boer & Ludford. For α=2, it yields similarity solutions to the well-known Korteweg-de Vries equation. Solutions are sought which satisfy the boundary conditions (1) y(∞)=0 (2) (1) $$y{\text{(}}\infty {\text{)}} = {\text{0}}$$ (2) $$y{\text{(}}x{\text{) \~( - }}\tfrac{{\text{1}}}{{\text{2}}}x{\text{)}}^{{{\text{1}} \mathord{\left/ {\vphantom {{\text{1}} \alpha }} \right. \kern-\nulldelimiterspace} \alpha }} {\text{ as }}x \to - \infty $$ It is shown that there is a unique such solution, and that it is, in a certain sense, the boundary between solutions which exist on the whole real line and solutions which, while tending to zero at plus infinity, blow up at a finite x. More precisely, any solution satisfying (1) is asymptotic at plus infinity to some multiple kA i(x) of Airy's function. We show that there is a unique k*(α) such that when k=k*(α) the condition (2) is also satisfied. If 0 *, the solution exists for all x and tends to zero as x→-∞, while if k>k * then the solution blows up at a finite x. For the special case α=2 the differential equation is classical, having been studied by Painlevé around the turn of the century. In this case, using an integral equation derived by inverse scattering techniques by Ablowitz & Segur, we are able to show that k*=1, confirming previous numerical estimates.  相似文献   

13.
High-resolution shadow visualization and high-frequency sonar detection are applied to separate out the density wake and a fine streaky structure in the vicinity of a vertical plate in motion in salt-stratified water. The length of the sounding acoustic wave is taken to be approximately equal to the universal microscale $\delta _N^v = \sqrt {{v \mathord{\left/ {\vphantom {v N}} \right. \kern-0em} N}}$ , where ν and N are the kinematic viscosity and the buoyance frequency. In the spectra of the vertical oscillations of the acoustic contrast some characteristic frequencies ω are separated out and used to calculate the local Stokes microscales $\delta _\omega ^v = \sqrt {{v \mathord{\left/ {\vphantom {v \omega }} \right. \kern-0em} \omega }}$ in the density wake region. The scales determined from the data of independent optical and acoustic measurements are in agreement with each other.  相似文献   

14.
We obtain theorems of Phragmén-Lindelöf type for the following classes of elliptic partial differential inequalities in an arbitrary unbounded domain \(\Omega \subseteq \mathbb{R}^n ,{\text{ }}n \geqq 2\) (A.1) $$\sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} 9(x)\frac{{\partial u}}{{\partial xj}}} \right)} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where a ij are elliptic in Ω and b i ε L(Ω) and where also a ij are uniformly elliptic and Holder continuous at infinity and b i = O(|x|+1) as x → ∞; (A.2) $${\text{(A}}{\text{.2) }}\sum\limits_{i,j = 1}^n {a_{ij} (x,{\text{ }}u,{\text{ }}\nabla u)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where aijare uniformly elliptic in Ω and b iε L(Ω); and finally (A.3) $${\text{div(}}\nabla u^p \nabla u {\text{)}} \geqq f{\text{(}}u{\text{), }}p > - 1,$$ where the operator on the left is the so-called P-Laplacian. The function f is always supposed positive and continuous. Moreover u is assumed throughout to be in the natural weak Sobolev space corresponding to the particular inequality under consideration, namely u ε. W loc 1,2 (Ω) ∩L loc t8 (Ω) for (A.I), W loc 2,n(Ω) for (A.2), and W loc 1,p+2 (Ω) ∩ L loc t8 (Ω) for (A.3). As a consequence of our results we obtain both non-existence and Liouville theorems, as well as existence theorems for (A.1).  相似文献   

15.

We investigate the n-body problem on a sphere with a general interaction potential that depends on the mutual distances. We focus on the equilibrium configurations, especially on the Dziobek equilibrium configurations, which is an analogy of Dziobek central configurations of the classical n-body problem. We obtain a criterion and then reduce it to two sets of equations. Then we apply these equations to the curved n-body problem in \({\mathbb {S}}^3\). In the end, we find the derivative of the Cayley-Menger determinant.

  相似文献   

16.
We study questions of existence, uniqueness and asymptotic behaviour for the solutions of u(x, t) of the problem $$\begin{gathered} {\text{ }}u_t - \Delta u = \lambda e^u ,{\text{ }}\lambda {\text{ > 0, }}t > 0,{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ (P){\text{ }}u(x,0) = u_0 (x),{\text{ }}x{\text{ }}\varepsilon B, \hfill \\ {\text{ }}u(x,t) = 0{\text{ }}on{\text{ }}\partial B \times (0,\infty ), \hfill \\ \end{gathered} $$ where B is the unit ball $\{ x\varepsilon R^N :|x|{\text{ }} \leqq {\text{ }}1\} {\text{ and }}N \geqq 3$ . Our interest is focused on the parameter λ 0=2(N?2) for which (P) admits a singular stationary solution of the form $$S(x) = - 2log|x|$$ . We study the dynamical stability or instability of S, which depends on the dimension. In particular, there exists a minimal bounded stationary solution u which is stable if $3 \leqq N \leqq 9$ , while S is unstable. For $N \geqq 10$ there is no bounded minimal solution and S is an attractor from below but not from above. In fact, solutions larger than S cannot exist in any time interval (there is instantaneous blow-up), and this happens for all dimensions.  相似文献   

17.
This paper considers the synchronization of inferior olive neurons based on the \({\mathcal {L}}_1\) adaptive control theory. The ION model treated here is the cascade connection of two nonlinear subsystems, termed ZW and UV subsystems. It is assumed that the structure of the nonlinear functions and certain parameters of the IONs are not known, and disturbance inputs are present in the system. First, an \({\mathcal {L}}_1\) adaptive control system is designed to achieve global synchrony of the ZW subsystems using a single control input. This controller can accomplish local synchrony of the UV subsystems if the linearized UV subsystem is exponentially stable. For global synchrony of the UV subsystems, an \({\mathcal {L}}_1\) adaptive control law is designed. Each of these controllers includes a state predictor, an update law, and a control law. In the closed-loop system, global synchrony of the complete models of the IONs (the interconnected ZW and UV subsystems) is accomplished using these two adaptive controllers. Simulations results show that in the closed-loop system, the IONs are synchronized, despite unmodeled nonlinearities, disturbance inputs, and parameter uncertainties in the system.  相似文献   

18.
An experiment was carried out to investigate the characteristics of the heat transfer and pressure drop for forced convection airflow over tube bundles that are inclined relative to the on-coming flow in a rectangular package with one outlet and two inlets. The experiments included a wide range of angles of attack and were extended over a Reynolds number range from about 250 to 12,500. Correlations for the Nusselt number and pressure drop factor are reported and discussed. As a result, it was found that at a fixed Re, for the tube bundles with attack angle of 45 ° has the best heat transfer coefficient, followed by 60, 75 and 90 °, respectively. This investigation also introduces the factors which can be used for finding the heat transfer and the pressure drop factor on the tube bundles positioned at different angles to the flow direction. Moreover, no perceptible dependence of Cand C on Re was detected. In addition, flow visualizations were explored to broaden our fundamental understanding of the heat transfer for the present study.  相似文献   

19.
We study the regularity and the asymptotic behavior of the solutions of the initial value problem for the porous medium equation $$\begin{gathered} {\text{ }}u_t = \left( {u^m } \right)_{xx} {\text{ in }}Q = \mathbb{R} \times \left( {{\text{0,}}\infty } \right){\text{,}} \hfill \\ u\left( {x{\text{,0}}} \right) = u_{\text{0}} \left( x \right){\text{ for }}x \in \mathbb{R}{\text{,}} \hfill \\ \end{gathered}$$ with m > 1 and, u 0a continuous, nonnegative function. It is well known that, across a moving interface x=ζ(t) of the solution u(x, t), the derivatives v tand v x of the pressure v = (m/(m?1)) u m?1 have jump discontinuities. We prove that each moving part of the interface is a C curve and that v is C on each side of the moving interface (and up to it). We also prove that for solutions with compact support the pressure becomes a concave function of x after a finite time. This fact implies sharp convergence rates for the solution and the interfaces as t→∞.  相似文献   

20.
This paper establishes the global in time existence of classical solutions to the two-dimensional anisotropic Boussinesq equations with vertical dissipation. When only vertical dissipation is present, there is no direct control on the horizontal derivatives and the global regularity problem is very challenging. To solve this problem, we bound the derivatives in terms of the ${L^\infty}$ -norm of the vertical velocity v and prove that ${\|v\|_{L^{r}}}$ with ${2\leqq r < \infty}$ does not grow faster than ${\sqrt{r \log r}}$ at any time as r increases. A delicate interpolation inequality connecting ${\|v\|_{L^\infty}}$ and ${\|v\|_{L^r}}$ then yields the desired global regularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号