首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper shows the structural diversity of cytosine (C)‐rich oligodeoxynucleotides (ODNs) arising from their detail nucleotide sequence and experimental conditions. In slightly acidic solutions, the ODN nonamers with different adenine (A) and cytosine (C) sequences can adopt non‐canonical structures involving protonated bases. A distinct secondary structure formed in (C)‐rich sequences, called i‐motif (iM), consists of hemiprotonated and intercalated cytosine base pairs (C.C+). Folding and unfolding of particular structures in solutions were monitored by 1H NMR and CD spectroscopies and native polyacrylamide gel electrophoresis (PAGE), which are capable to determine their structural characteristics. Effects of sequences and their proclivity to formation of the iM on electrochemical behaviour of the ODN nonamers were studied by electrochemical methods. The LSV signals of A and C obtained from the reductive dissolution of ODN adsorption layers on a hanging mercury drop electrode were processed by elimination voltammetry with linear scan (EVLS), which revealed complex effects of the nonamer properties (namely their primary and secondary structure confirmed in solution) on their adsorption and reduction activity.  相似文献   

2.
This invited Team Profile was created by Kevin Li and Liliya Yatsunyk, Swarthmore College PA (USA) and by John Schneekloth, Jr, (Jay) National Cancer Institute, Frederick MD (USA) . They recently published an article on the first crystal structure of an intercalated motif (i-motif or iM) from the HRAS oncogene involved in many cancers. The iHRAS structure was solved to 1.8 Å resolution. It contains a tail-to-tail dimer of two iMs each with six C−C+ base pairs. The structure is unique in that only two base pairs out of 20 are canonical. The extensive network of capping and connecting interactions is unprecedented. The unique structural elements (loops/connecting region) may be targeted by ligands or proteins as cancer therapies. iHRAS represents the first crystallized iM-forming structure from a human promoter. “Crystal Structure of an iM from the HRAS Oncogene Promoter”, K. S. Li, D. Jordan, L. Y. Lin, S. E. McCarthy, J. S. Schneekloth Jr., and L. A. Yatsunyk, Angew. Chem. Int. Ed. Engl. 2023 , 62, e202301666 .  相似文献   

3.
RNA secondary structure prediction is a key technology in RNA bioinformatics. Most algorithms for RNA secondary structure prediction use probabilistic models, in which the model parameters are trained with reliable RNA secondary structures. Because of the difficulty of determining RNA secondary structures by experimental procedures, such as NMR or X-ray crystal structural analyses, there are still many RNA sequences that could be useful for training whose secondary structures have not been experimentally determined. In this paper, we introduce a novel semi-supervised learning approach for training parameters in a probabilistic model of RNA secondary structures in which we employ not only RNA sequences with annotated secondary structures but also ones with unknown secondary structures. Our model is based on a hybrid of generative (stochastic context-free grammars) and discriminative models (conditional random fields) that has been successfully applied to natural language processing. Computational experiments indicate that the accuracy of secondary structure prediction is improved by incorporating RNA sequences with unknown secondary structures into training. To our knowledge, this is the first study of a semi-supervised learning approach for RNA secondary structure prediction. This technique will be useful when the number of reliable structures is limited.  相似文献   

4.
Nanometer-scale arrays of conducting polymers were prepared on scaffolds of self-assembling DNA modules. A series of DNA oligomers was prepared, each containing six 2,5-bis(2-thienyl)pyrrole (SNS) monomer units linked covalently to N4 atoms of alternating cytosines placed between leading and trailing 12-nucleobase recognition sequences. These DNA modules were encoded so the recognition sequences would uniquely associate through Watson-Crick assembly to form closed-cycle or linear arrays of aligned SNS monomers. The melting behavior and electrophoretic migration of these assemblies showed cooperative formation of multicomponent arrays containing two to five DNA modules (i.e., 12-30 SNS monomers). The treatment of these arrays with horseradish peroxidase and H(2)O(2) resulted in oxidative polymerization of the SNS monomers with concomitant ligation of the DNA modules. The resulting cyclic and linear arrays exhibited chemical and optical properties typical of conducting thiophene-like polymers, with a red-end absorption beyond 1250 nm. AFM images of the cyclic array containing 18 SNS units revealed highly regular 10 nm diameter objects.  相似文献   

5.
DNA-templated organic synthesis enables the translation, selection, and amplification of DNA sequences encoding synthetic small-molecule libraries. As the size of DNA-templated libraries increases, the possibility of forming intramolecularly base-paired structures within templates that impede templated reactions increases as well. To achieve uniform reactivity across many template sequences and to computationally predict and remove any problematic sequences from DNA-templated libraries, we have systematically examined the effects of template sequence and secondary structure on DNA-templated reactivity. By testing a series of template sequences computationally designed to contain different degrees of internal secondary structure, we observed that high levels of predicted secondary structure involving the reagent binding site within a DNA template interfere with reagent hybridization and impair reactivity, as expected. Unexpectedly, we also discovered that templates containing virtually no predicted internal secondary structure also exhibit poor reaction efficiencies. Further studies revealed that a modest degree of internal secondary structure is required to maximize effective molarities between reactants, possibly by compacting intervening template nucleotides that separate the hybridized reactants. Therefore, ideal sequences for DNA-templated synthesis lie between two undesirable extremes of too much or too little internal secondary structure. The relationship between effective molarity and intervening nucleic acid secondary structure described in this work may also apply to nucleic acid sequences in living systems that separate interacting biological molecules.  相似文献   

6.
Selecting folded proteins from a library of secondary structural elements   总被引:1,自引:0,他引:1  
A protein evolution strategy is described by which double-stranded DNA fragments encoding defined Escherichia coli protein secondary structural elements (alpha-helices, beta-strands, and loops) are assembled semirandomly into sequences comprised of as many as 800 amino acid residues. A library of novel polypeptides generated from this system was inserted into an enhanced green fluorescent protein (EGFP) fusion vector. Library members were screened by fluorescence activated cell sorting (FACS) to identify those polypeptides that fold into soluble, stable structures in vivo that comprised a subset of shorter sequences ( approximately 60 to 100 residues) from the semirandom sequence library. Approximately 108 clones were screened by FACS, a set of 1149 high fluorescence colonies were characterized by dPCR, and four soluble clones with varying amounts of secondary structure were identified. One of these is highly homologous to a domain of aspartate racemase from a marine bacterium (Polaromonas sp.) but is not homologous to any E. coli protein sequence. Several other selected polypeptides have no global sequence homology to any known protein but show significant alpha-helical content, limited dispersion in 1D nuclear magnetic resonance spectra, pH sensitive ANS binding and reversible folding into soluble structures. These results demonstrate that this strategy can generate novel polypeptide sequences containing secondary structure.  相似文献   

7.
Single-stranded DNA with G-rich sequences can fold into secondary structures, G-quadruplexes, via intramolecular hydrogen-bonding interactions. This conformational change can be detected by a homogeneous assay method based on fluorescence resonance energy transfer (FRET) from a water-soluble cationic conjugated polymer (CCP) to a fluorescein chromophore labeled at the terminus of the G-quadruplex DNA. The space charge density around the DNA controls the efficiency of FRET from the CCP to the fluorescein. The higher FRET efficiency for the CCP/G-quadruplex pair is correlated to the stronger electrostatic interactions between the more condensed G-quadruplex and the CCP in comparison to the CCP/ssDNA pair. Since the potassium ion can specifically bind to the G-quadruplex DNA, the G-quartet-DNA/CCPs assembly can also be used as a platform to sense the potassium ion in water with high selectivity and sensitivity.  相似文献   

8.
A synthetic methodology for the synthesis of various β-pyrrolic-functionalised porphyrins and their covalent attachment to 2'-deoxyuridine and DNA is described. Palladium(0)-catalysed Sonogashira and copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2'-deoxyuridine and DNA. Insertion of a porphyrin into the middle of single-stranded CT oligonucleotides possessing a 5'-terminal run of four cytosines was shown to trigger the formation of pH- and temperature-dependent i-motif structures. Porphyrin insertion also led to the aggregation of single-stranded purine-pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti-parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin-modified triplex-forming oligonucleotide (TFO) strands was observed, whereas anti-parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations.  相似文献   

9.
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four‐stranded intercalated DNA structures called i‐motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i‐motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i‐motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long‐lasting debate regarding the stability of i‐motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i‐motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i‐motif‐targeted regulation of gene expression, telomere maintenance, and therapeutic applications.  相似文献   

10.
基因组计划在实施产生了大量的DNA序列信息,如何有效地利用这些信息来研究基因的产物-蛋白质的结构与功能成为引入注目的研究领域,同源蛋白质结构预测及蛋白质折工识别是在基因组水平上进行蛋白质结构预测的有效方法,酵母基因组中约有50%的基因可以通过这类方法来确定其表面产物蛋白质的结构[1],但是目前所采用的方法在低同源性蛋白质的结构预测方面尚存在较大困难。  相似文献   

11.
β-Hexapeptides 1–5 and a β-dodecapeptide 6 with sequences containing two different types of β-amino acids (aliphatic proteinageous side chains in the 2- or in the 3-position) have been prepared. CD (Fig. 1) and NMR measurements indicate that, with one exception, the secondary structures formed by these new β-peptides differ from those of isomers studied previously. Detailed NMR analysis of the β-hexapeptide 5 (with alternating β23-building blocks) and molecular-dynamics simulations have produced a minimum energy conformation (Fig. 2,b)which might be described as a novel irregular helix containing ten- and twelve-membered H-bonded rings. This demonstrates the great structural variability of β-peptides, since three different helical secondary structures have been discovered to date.  相似文献   

12.
CCG triplet repeats can fold into tetraplex structures, which are associated with the expansion of (CCG)n trinucleotide sequences in certain neurological diseases. These structures are stabilized by intertwining i‐motifs. However, the structural basis for tetraplex i‐motif formation in CCG triplet repeats remains largely unknown. We report the first crystal structure of a CCG‐repeat sequence, which shows that two dT(CCG)3A strands can associate to form a tetraplex structure with an i‐motif core containing four C:C+ pairs flanked by two G:G homopurine base pairs as a structural motif. The tetraplex core is attached to a short parallel‐stranded duplex. Each hairpin itself contains a central CCG loop in which the nucleotides are flipped out and stabilized by stacking interactions. The helical twists between adjacent cytosine residues of this structure in the i‐motif core have an average value of 30°, which is greater than those previously reported for i‐motif structures.  相似文献   

13.
Molecular dynamics simulations have been used to study the differences between two DNA and RNA 14-mer quadruplexes of analogous sequences. Their structures present a completely different fold: DNA forms a bimolecular quadruplex containing antiparallel strands and diagonal loops; RNA forms an intrastrand parallel quadruplex containing a G-tetrad and an hexad, which dimerizes by hexad stacking. We used a multiscale computational approach combining classical Molecular dynamics simulations and density functional theory calculations to elucidate the difference in stability of the 2-folds and their ability in coordinating cations. The presence of 2'-OH groups in the RNA promotes the formation of a large number of intramolecular hydrogen bonds that account for the difference in fold and stability of the two 14-mers. We observe that the adenines in the RNA quadruplex play a key role in conserving the geometry of the hexad. We predict the cation coordination mode of the two quadruplexes, not yet observed experimentally, and we offer a rationale for the corresponding binding energies involved.  相似文献   

14.
Background: Oligonucleotide-directed triple-helix (triplex) formation can interfere with gene expression but only long tracts of oligopyrimidine·oligopurine sequences can be targeted. Attempts have been made to recognize short oligopurine sequences alternating on the two strands of double-stranded DNA by the covalent linkage of two triplex-forming oligonucleotides. Here we focus on the rational optimization of such an alternate-strand triplex formation on a DNA duplex containing a 5′-GpT-3′/3′-CpA-5′ or a 5′-TpG-3′/3′-ApC-5′ step by combination of (G,T)- and (G,A)-contain ing oligonucleotides that bind to the oligopurine strands in opposite orientations.Results: The deletion of one nucleotide in the reverse Hoogsteen region of the oligonucleotide provides the best binding at the 5′-GpT-3′/3′-CpA-5′ step, whereas the addition of two cytosines as a linker between the two oligonucleotides is the best strategy to cross a 5′-TpG-3′/3′-ApC-5′ step. Energy minimization and experimental data suggest that these two cytosines are involved in the formation of two novel base quadruplets.Conclusions: These data provide a rational basis for the design of oligonucleotides capable of binding to oligopurine sequences that alternate on the two strands of double-stranded DNA with a 5′-GpT-3′/3′-CpA-5′ or a 5′-TpG-3′/3′-ApC-5' step at the junction.  相似文献   

15.
The diverse secondary structures of nucleic acids are emerging as attractive chiral scaffolds to construct artificial metalloenzymes (ArMs) for enantioselective catalysis. DNA‐based ArMs containing duplex and G‐quadruplex scaffolds have been widely investigated, yet RNA‐based ArMs are scarce. Here we report that a cyclic dinucleotide of c‐di‐AMP and Cu2+ ions assemble into an artificial metalloribozyme (c‐di‐AMP?Cu2+) that enables catalysis of enantioselective Friedel–Crafts reactions in aqueous media with high reactivity and excellent enantioselectivity of up to 97 % ee. The assembly of c‐di‐AMP?Cu2+ gives rise to a 20‐fold rate acceleration compared to Cu2+ ions. Based on various biophysical techniques and density function theory (DFT) calculations, a fine coordination structure of c‐di‐AMP?Cu2+ metalloribozyme is suggested in which two c‐di‐AMP form a dimer scaffold and the Cu2+ ion is located in the center of an adenine‐adenine plane through binding to two N7 nitrogen atoms and one phosphate oxygen atom.  相似文献   

16.
According to the characterization of RNA secondary structures, the RNA secondary structures are transformed into elementary sequences, namely characteristic sequences of RNA secondary structures, by representing A, U, G, C in A-U/ G-C pairs, as A′, U′, G′, C′. Based on the representation, three recurrences for mapping RNA secondary structures into 1-D graph, 2-D graph and 3-D graph are given, respectively. Furthermore, a frequency-based method for RNA secondary structures is given in terms of 1-D graph.  相似文献   

17.
The conformation of an unusual slipped loop DNA structure exhibited by the sequence d(GAATTCCCGAATTC)2 is determined using a combination of geometrical and molecular mechanics methods. This sequence is known to form a B-DNA-like duplex with the central non-complementary cytosines extruded into single stranded loop regions. The unusual feature is that the interior guanine does not pair with the cytosine across, instead, it pairs with the cytosine upstream by skipping two cytosines, leading to a slipped loop DNA structure with the loops staggered by two base pairs. The two loops, despite being very small, can fold across minor or major groove symmetrically or asymmetrically disposed, with one of the loop bases partially blocking the major or minor groove. Most interestingly, for certain conformations, the loop bases approach one another at close proximity so as to engage even in base pairing as well as base stacking interactions across the major groove. While such pairing and stacking are common in the tertiary folds of RNA, this is the first time that such an interaction is visualized in a DNA. This observation demonstrates that a W-C pair can readily be accomplished in a typical slipped loop structure postulated for DNA. Such tertiary loop interaction may prevent access to regulatory proteins across the major groove of the duplex DNA, thus providing a structure-function relation for the occurrence of slipped loop structure in DNA. Contribution no. 839 from this department  相似文献   

18.
Li H  Lau C  Lu J 《The Analyst》2008,133(9):1229-1236
For clinical diagnosis, a small number of targets (2-10 biomarkers) are often all that is required for disease assessment and accurate early disease diagnosis. In the current paper we have developed novel, carrier-resolved, single-label-based multiplexed assays for the simultaneous detection and quantification of a limited number of DNA targets associated with breast cancer. In contrast to current encoding strategies, every hybridization signal for the corresponding DNA target in our protocol is uniquely immobilized onto one carrier vehicle with a unique and intrinsic physico-chemical signature. Moreover, a simple chemiluminescence setup is employed to read the carrier code instead of expensive and complicated flow-cytometer or imaging-systems commonly used for multiplexed assays. Herein we demonstrate a new protocol using three homogeneous carriers, i.e. thermo-sensitive poly(N-isopropylacrylamide) (PNIP), polystyrene beads, and magnetic beads respectively. This new methodology allowed for the simultaneous determination of three oligonucleotide sequences (60 bases in length) associated with the breast cancer gene (BRCA1) and showed high selectivity and attomolar-femtomolar sensitivity. The mixture of three different capture probe conjugates first hybridizes with three corresponding target sequences, sandwiches with three biotinylated DNAs, and then reacts with peroxidase-streptavidin polymer in a single vessel without any washing, leading to the development of a 'one-pot reaction system'. Only one washing step in our protocol is required prior to detection leading to our whole procedure being simple and efficient. The results show that the hybridization response to sample mixtures containing increasing levels of each target is proportional to the amount of corresponding DNA targets, indicating minimal cross-interferences. The work presented here validates the design and concept of a system for the detection of a limited number of DNA targets and provides the foundation for the development of highly sensitive techniques with increased multi-analyte capabilities.  相似文献   

19.
A series of aromatic oligoamide foldamer sequences containing different proportions of three δ-amino acids derived from quinoline, pyridine, and benzene and possessing varying flexibility, for example due to methylene bridges, were synthesized. Crystallographic structures of two key sequences and 1H NMR data in water concur to show that a canonical aromatic helix fold prevails in almost all cases and that helix stability critically depends on the ratio between rigid and flexible units. Notwithstanding subtle variations of curvature, i. e. the numbers of units per turn, the aromatic δ-peptide helix is therefore shown to be general and tolerant of a great number of sp3 centers. We also demonstrate canonical helical folding upon alternating two monomers that do not promote folding when taken separately: folding occurs with two methylenes between every other unit, not with one methylene between every unit. These findings highlight that a fine-tuning of helix handedness inversion kinetics, curvature, and side chain positioning in aromatic δ-peptidic foldamers can be realized by systematically combining different yet compatible δ-amino acids.  相似文献   

20.
Magnolol and honokiol as pharmaceutical ligands have been introduced into terbium complex systems for the first time and two hybrid organic–inorganic materials were successfully prepared. Both of them can sensitize terbium characteristic green emission effectively based on intra-molecular energy transfer channel. Moreover, they selectively recognized Cu2+ and Fe3+ through luminescence quenching effects. The photophysical properties and morphological structures were extensively investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号