首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The electrolytes in lithium metal batteries have to be compatible with both lithium metal anodes and high voltage cathodes, and can be regulated by manipulating the solvation structure. Herein, to enhance the electrolyte stability, lithium nitrate (LiNO3) and 1,1,2,2-tetrafuoroethyl-2′,2′,2′-trifuoroethyl(HFE) are introduced into the high-concentration sulfolane electrolyte to suppress Li dendrite growth and achieve a high Coulombic efficiency of >99 % for both the Li anode and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Molecular dynamics simulations show that NO3 participates in the solvation sheath of lithium ions enabling more bis(trifluoromethanesulfonyl)imide anion (TFSI) to coordinate with Li+ ions. Therefore, a robust LiNxOy−LiF-rich solid electrolyte interface (SEI) is formed on the Li surface, suppressing Li dendrite growth. The LiNO3-containing sulfolane electrolyte can also support the highly aggressive LiNi0.8Mn0.1Co0.1O2 (NMC811) cathode, delivering a discharge capacity of 190.4 mAh g−1 at 0.5 C for 200 cycles with a capacity retention rate of 99.5 %.  相似文献   

2.
In this paper, we report an advanced long‐life lithium ion battery, employing a Pyr14TFSI‐LiTFSI non‐flammable ionic liquid (IL) electrolyte, a nanostructured tin carbon (Sn‐C) nanocomposite anode, and a layered LiNi1/3Co1/3Mn1/3O2 (NMC) cathode. The IL‐based electrolyte is characterized in terms of conductivity and viscosity at various temperatures, revealing a Vogel–Tammann–Fulcher (VTF) trend. Lithium half‐cells employing the Sn‐C anode and NMC cathode in the Pyr14TFSI‐LiTFSI electrolyte are investigated by galvanostatic cycling at various temperatures, demonstrating the full compatibility of the electrolyte with the selected electrode materials. The NMC and Sn‐C electrodes are combined into a cathode‐limited full cell, which is subjected to prolonged cycling at 40 °C, revealing a very stable capacity of about 140 mAh g?1 and retention above 99 % over 400 cycles. The electrode/electrolyte interface is further characterized through a combination of electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) investigations upon cell cycling. The remarkable performances reported here definitively indicate that IL‐based lithium ion cells are suitable batteries for application in electric vehicles.  相似文献   

3.
A proof-of-concept study on a liquid/liquid (L/L) two-phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li-metal anode with long-term operation over 2000 h. The L/L electrolyte interface constructed by non-polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li-ion flow and Li-mass deposition can be realized by the formation of a thin and uniform solid-electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super-wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface.  相似文献   

4.
A proof‐of‐concept study on a liquid/liquid (L/L) two‐phase electrolyte interface is reported by using the polarity difference of solvent for the protection of Li‐metal anode with long‐term operation over 2000 h. The L/L electrolyte interface constructed by non‐polar fluorosilicane (PFTOS) and conventionally polar dimethyl sulfoxide solvents can block direct contact between conventional electrolyte and Li anode, and consequently their side reactions can be significantly eliminated. Moreover, the homogeneous Li‐ion flow and Li‐mass deposition can be realized by the formation of a thin and uniform solid‐electrolyte interphase (SEI) composed of LiF, LixC, LixSiOy between PFTOS and Li anode, as well as the super‐wettability state of PFTOS to Li anode, resulting in the suppression of Li dendrite formation. The cycling stability in a lithium–oxygen battery as a model is improved 4 times with the L/L electrolyte interface.  相似文献   

5.
High‐energy‐density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co‐solvents with sustained‐release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high‐loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm?2), and lean electrolytes (6.1 g Ah?1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg?1 for 60 cycles with lean electrolytes (2.3 g Ah?1).  相似文献   

6.
Polymer based quasi-solid-state electrolyte (QSE) has attracted great attention due to its assurance for high safety of rechargeable batteries including lithium metal batteries (LMB). However, it faces the issue of low ionic conductivity of electrolyte and solid-electrolyte-interface (SEI) layer between QSE and lithium anode. Herein, we firstly demonstrate that the ordered and fast transport of lithium ion (Li+) can be realized in QSE. Due to the higher coordination strength of Li+ on tertiary amine (−NR3) group of polymer network than that on carbonyl (−C=O) group of ester solvent, Li+ can diffuse orderly and quickly on −NR3 of polymer, significantly increasing the ionic conductivity of QSE to 3.69 mS cm−1. Moreover, −NR3 of polymer can induce in situ and uniform generation of Li3N and LiNxOy in SEI. As a result, the Li||NCM811 batteries (50 μm Li foil) with this QSE show an excellent stability of 220 cycles at ≈1.5 mA cm−2, 5 times to those with conventional QSE. LMBs with LiFePO4 can stably run for ≈8300 h. This work demonstrates an attractive concept for improving ionic conductivity of QSE, and also provides an important step for developing advanced LMB with high cycle stability and safety.  相似文献   

7.
Ni-rich LiNi1−xyMnxCoyO2 (NMC) layered compounds are the dominant cathode for lithium ion batteries. The role of crystallographic defects on structure evolution and performance degradation during electrochemical cycling is not yet fully understood. Here, we investigated the structural evolution of a Ni-rich NMC cathode in a solid-state cell by in situ transmission electron microscopy. Antiphase boundary (APB) and twin boundary (TB) separating layered phases played an important role on phase change. Upon Li depletion, the APB extended across the layered structure, while Li/transition metal (TM) ion mixing in the layered phases was detected to induce the rock-salt phase formation along the coherent TB. According to DFT calculations, Li/TM mixing and phase transition were aided by the low diffusion barriers of TM ions at planar defects. This work reveals the dynamical scenario of secondary phase evolution, helping unveil the origin of performance fading in Ni-rich NMC.  相似文献   

8.
High-energy-density Li metal batteries suffer from a short lifespan under practical conditions, such as limited lithium, high loading cathode, and lean electrolytes, owing to the absence of appropriate solid electrolyte interphase (SEI). Herein, a sustainable SEI was designed rationally by combining fluorinated co-solvents with sustained-release additives for practical challenges. The intrinsic uniformity of SEI and the constant supplements of building blocks of SEI jointly afford to sustainable SEI. Specific spatial distributions and abundant heterogeneous grain boundaries of LiF, LiNxOy, and Li2O effectively regulate uniformity of Li deposition. In a Li metal battery with an ultrathin Li anode (33 μm), a high-loading LiNi0.5Co0.2Mn0.3O2 cathode (4.4 mAh cm−2), and lean electrolytes (6.1 g Ah−1), 83 % of initial capacity retains after 150 cycles. A pouch cell (3.5 Ah) demonstrated a specific energy of 340 Wh kg−1 for 60 cycles with lean electrolytes (2.3 g Ah−1).  相似文献   

9.
Safe and rechargeable lithium metal batteries have been difficult to achieve because of the formation of lithium dendrites. Herein an emerging electrolyte based on a simple solvation strategy is proposed for highly stable lithium metal anodes in both coin and pouch cells. Fluoroethylene carbonate (FEC) and lithium nitrate (LiNO3) were concurrently introduced into an electrolyte, thus altering the solvation sheath of lithium ions, and forming a uniform solid electrolyte interphase (SEI), with an abundance of LiF and LiNxOy on a working lithium metal anode with dendrite‐free lithium deposition. Ultrahigh Coulombic efficiency (99.96 %) and long lifespans (1000 cycles) were achieved when the FEC/LiNO3 electrolyte was applied in working batteries. The solvation chemistry of electrolyte was further explored by molecular dynamics simulations and first‐principles calculations. This work provides insight into understanding the critical role of the solvation of lithium ions in forming the SEI and delivering an effective route to optimize electrolytes for safe lithium metal batteries.  相似文献   

10.
Solid‐oxide Li+ electrolytes of a rechargeable cell are generally sensitive to moisture in the air as H+ exchanges for the mobile Li+ of the electrolyte and forms insulating surface phases at the electrolyte interfaces and in the grain boundaries of a polycrystalline membrane. These surface phases dominate the total interfacial resistance of a conventional rechargeable cell with a solid–electrolyte separator. We report a new perovskite Li+ solid electrolyte, Li0.38Sr0.44Ta0.7Hf0.3O2.95F0.05, with a lithium‐ion conductivity of σLi=4.8×10?4 S cm?1 at 25 °C that does not react with water having 3≤pH≤14. The solid electrolyte with a thin Li+‐conducting polymer on its surface to prevent reduction of Ta5+ is wet by metallic lithium and provides low‐impedance dendrite‐free plating/stripping of a lithium anode. It is also stable upon contact with a composite polymer cathode. With this solid electrolyte, we demonstrate excellent cycling performance of an all‐solid‐state Li/LiFePO4 cell, a Li‐S cell with a polymer‐gel cathode, and a supercapacitor.  相似文献   

11.
Lithium metal batteries (LMBs) comprising Li metal anode and high-voltage nickel-rich cathode could potentially realize high capacity and power density. However, suitable electrolytes to tolerate the oxidation on the cathode at high cut-off voltage are urgently needed. Herein, we present an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy for exploring oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries with pentafluorophenylboronic acid (PFPBA) as the additive. In such CEI, the armored lithium borate surrounded by CEI up-layer represses the dissolution of inner CEI moieties and also improves the Li+ conductivity of CEI while abundant LiF is distributed over whole CEI to enhance the mechanical stability and Li+ conductivity compared with polymer moieties. With such robust Li+ conductive CEI, the Li||NCM622 battery delivered excellent stability at 4.6 V cut-off voltage with 91.2 % capacity retention after 400 cycles. The excellent cycling performance was also obtained even at 4.8 V cut-off voltage.  相似文献   

12.
High-energy Li metal batteries (LMBs) consisting of Li metal anodes and high-voltage cathodes are promising candidates of the next generation energy-storage systems owing to their ultrahigh energy density. However, it is still challenging to develop high-voltage nonflammable electrolytes with superior anode and cathode compatibility for LMBs. Here, we propose an active diluent-anion synergy strategy to achieve outstanding compatibility with Li metal anodes and high-voltage cathodes by using 1,2-difluorobenzene (DFB) with high activity for yielding LiF as an active diluent to regulate nonflammable dimethylacetamide (DMAC)-based localized high concentration electrolyte (LHCE-DFB). DFB and bis(fluorosulfonyl)imide (FSI) anion cooperate to construct robust LiF-rich solid electrolyte interphase (SEI) and cathode electrolyte interphase (CEI), which effectively stabilize DMAC from intrinsic reactions with Li metal anode and enhance the interfacial stability of the Li metal anodes and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes. LHCE-DFB enables ultrahigh Coulombic efficiency (98.7 %), dendrite-free, extremely stable and long-term cycling of Li metal anodes in Li || Cu cells and Li || Li cells. The fabricated NCM811 || Li cells with LHCE-DFB display remarkably enhanced long-term cycling stability and excellent rate capability. This work provides a promising active diluent-anion synergy strategy for designing high-voltage electrolytes for high-energy batteries.  相似文献   

13.
Solid-state batteries (SSBs) with high-voltage cathode active materials (CAMs) such as LiNi1−xyCoxMnyO2 (NCM) and poly(ethylene oxide) (PEO) suffer from “noisy voltage” related cell failure. Moreover, reports on their long-term cycling performance with high-voltage CAMs are not consistent. In this work, we verified that the penetration of lithium dendrites through the solid polymer electrolyte (SPE) indeed causes such “noisy voltage cell failure”. This problem can be overcome by a simple modification of the SPE using higher molecular weight PEO, resulting in an improved cycling stability compared to lower molecular weight PEO. Furthermore, X-ray photoelectron spectroscopy analysis confirms the formation of oxidative degradation products after cycling with NCM, for what Fourier transform infrared spectroscopy is not suitable as an analytical technique due to its limited surface sensitivity. Overall, our results help to critically evaluate and improve the stability of PEO-based SSBs.  相似文献   

14.
The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNxOy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg−1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity.  相似文献   

15.
Halide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all–solid–state Li–ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+–doped, cation–disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium–deficient layer featuring a rock–salt–like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high–loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide–based ASSBs at high voltages.  相似文献   

16.
Albeit ethers are favorable electrolyte solvents for lithium (Li) metal anode, their inferior oxidation stability (<4.0 V vs. Li/Li+) is problematic for high-voltage cathodes. Studies of ether electrolytes have been focusing on the archetype glyme structure with ethylene oxide moieties. Herein, we unveil the crucial effect of ion coordination configuration on oxidation stability by varying the ether backbone structure. The designed 1,3-dimethoxypropane (DMP, C3) forms a unique six-membered chelating complex with Li+, whose stronger solvating ability suppresses oxidation side reactions. In addition, the favored hydrogen transfer reaction between C3 and anion induces a dramatic enrichment of LiF (a total atomic ratio of 76.7 %) on the cathode surface. As a result, the C3-based electrolyte enables greatly improved cycling of nickel-rich cathodes under 4.7 V. This study offers fundamental insights into rational electrolyte design for developing high-energy-density batteries.  相似文献   

17.
Although high ionic conductivities have been achieved in most solid-state electrolytes used in lithium metal batteries (LMBs), rapid and stable lithium-ion transport between solid-state electrolytes and lithium anodes remains a great challenge due to the high interfacial impedances and infinite volume changes of metallic lithium. In this work, a chemical vapor-phase fluorination approach is developed to establish a lithiophilic surface on rubber-derived electrolytes, which results in the formation of a resilient, ultrathin, and mechanically integral LiF-rich layer after electrochemical cycling. The resulting ultraconformal layer chemically connects the electrolyte and lithium anode and maintains dynamic contact during operation, thus facilitating rapid and stable lithium-ion transport across interfaces, as well as promoting uniform lithium deposition and inhibiting side reactions between electrolyte components and metallic lithium. LMBs containing the novel electrolyte have an ultralong cycling life of 2500 h and deliver a high critical current density of 1.1 mA cm−2 in lithium symmetric cells as well as showing good stability over 300 cycles in a full cell.  相似文献   

18.
Single-crystal LiNixCoyMnzO2 (SC-NCM, x+y+z=1) cathodes are renowned for their high structural stability and reduced accumulation of adverse side products during long-term cycling. While advances have been made using SC-NCM cathode materials, careful studies of cathode degradation mechanisms are scarce. Herein, we employed quasi single-crystalline LiNi0.65Co0.15Mn0.20O2 (SC-NCM65) to test the relationship between cycling performance and material degradation for different charge cutoff potentials. The Li/SC-NCM65 cells showed >77 % capacity retention below 4.6 V vs. Li+/Li after 400 cycles and revealed a significant decay to 56 % for 4.7 V cutoff. We demonstrate that the SC-NCM65 degradation is due to accumulation of rock-salt (NiO) species at the particle surface rather than intragranular cracking or side reactions with the electrolyte. The NiO-type layer formation is also responsible for the strongly increased impedance and transition-metal dissolution. Notably, the capacity loss is found to have a linear relationship with the thickness of the rock-salt surface layer. Density functional theory and COMSOL Multiphysics modeling analysis further indicate that the charge-transfer kinetics is decisive, as the lower lithium diffusivity of the NiO phase hinders charge transport from the surface to the bulk.  相似文献   

19.
Dual-ion batteries (DIBs) have attracted much attention owing to their low cost, high voltage, and environmental friendliness. As the source of active ions during the charging/discharging process, the electrolyte plays a critical role in the performance of DIBs, including capacity, energy density, and cycling life. However, most used electrolyte systems based on the LiPF6 salt demonstrate unsatisfactory performance in DIBs. We have successfully developed a 7.5 mol kg−1 lithium bis(fluorosulfonyl)imide (LiFSI) in a carbonate electrolyte system. Compared with diluted electrolytes, this highly concentrated electrolyte exhibits several advantages: 1) enhanced intercalation capacity and cycling stability of the graphite cathode, 2) optimized structural stability of the Al anode, and 3) significantly increased battery energy density. A proof-of-concept DIB based on this concentrated electrolyte exhibits a discharge capacity of 94.0 mAh g−1 at 200 mA g−1 and 96.8 % capacity retention after 500 cycles. By counting both the electrode materials and electrolyte, the energy density of this DIB reaches up to ≈180 Wh kg−1, which is among the best performances of DIBs reported to date.  相似文献   

20.
Lithium metal is an ideal electrode material for future rechargeable lithium metal batteries. However, the widespread deployment of metallic lithium anode is significantly hindered by its dendritic growth and low Coulombic efficiency, especially in ester solvents. Herein, by rationally manipulating the electrolyte solvation structure with a high donor number solvent, enhancement of the solubility of lithium nitrate in an ester-based electrolyte is successfully demonstrated, which enables high-voltage lithium metal batteries. Remarkably, the electrolyte with a high concentration of LiNO3 additive presents an excellent Coulombic efficiency up to 98.8 % during stable galvanostatic lithium plating/stripping cycles. A full-cell lithium metal battery with a lithium nickel manganese cobalt oxide cathode exhibits a stable cycling performance showing limited capacity decay. This approach provides an effective electrolyte manipulation strategy to develop high-voltage lithium metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号