首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
A liposome‐based co‐delivery system composed of a fusogenic liposome encapsulating ATP‐responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP‐mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein–DNA complex core containing an ATP‐responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell‐penetrating peptide‐modified fusogenic liposomal membrane was coated on the core, which had an acid‐triggered fusogenic potential with the ATP‐loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH‐sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.  相似文献   

2.
We previously reported that transferrin (Tf)-modified liposomes (Tf-L) additionally modified with a cholesterylated pH-sensitive fusogenic peptide (Chol-GALA) can release an encapsulated aqueous phase marker to cytosol via endosomal membrane fusion. However, further obstacles need to be overcome to bring the Tf-L to the level of a viral-like gene delivery system. In this study, we developed a novel packaging method to encapsulate condensed plasmid DNA into PEgylated Tf-L (Tf-PEG-L) to form a core–shell-type nanoparticle. The most difficult challenge was to provide a mechanism of escape for the condensed core from endosome to cytosol in the presence of polyethylene glycol (PEG). We hypothesized that a membrane-introduced Chol-GALA and a PEgylated GALA would interact synergistically to induce membrane fusion between liposome and endosome. By simultaneously incorporating Chol-GALA into the membrane of Tf-PEG-L and GALA at tips of PEG chains, a condensed core was released into cytosol, and transfection acitivty increased 100-fold. We concluded that topological control was responsible for the synergistic effect of GALA derivatives introduced on Tf-PEG-L. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Kentaro Sasaki and Kentaro Kogure contributed equally to this work.  相似文献   

3.
Engineering of the cell plasma membrane using functional DNA is important for studying and controlling cellular behaviors. However, most efforts to apply artificial DNA interactions on cells are limited to external membrane surface due to the lack of suitable synthetic tools to engineer the intracellular side, which impedes many applications in cell biology. Inspired by the natural extracellular vesicle-cell fusion process, we have developed a fusogenic spherical nucleic acid construct to realize robust DNA functionalization on both external and internal cell surfaces via liposome fusion-based transport (LiFT) strategy, which enables applications including the construction of heterotypic cell assembly for programmed signaling pathway and detection of intracellular metabolites. This approach can engineer cell membranes in a highly efficient and spatially controlled manner, allowing one to build anisotropic membrane structures with two orthogonal DNA functionalities.  相似文献   

4.
Ultrasound is commonly used in the preparation of unilamellar liposome dispersions and is often considered for cell membrane disruption for drug delivery or DNA transfection applications. To better understand the physical and chemical properties of lipid membranes that render them susceptible to ultrasonic permeabilization, the roles of temperature, lipid composition (cholesterol and PEG-lipid content), and liposome size have been studied. The results of these studies suggest that lipid packing is very important to ultrasound responsiveness; surprisingly, cohesive energy and tensile strength are not. Taken together, the experimental results implicate a defect-mediated permeabilization mechanism, rather than pore formation or membrane tearing. The implications of this work for drug release from liposomes and ultrasound-mediated DNA transfection are discussed.  相似文献   

5.
In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.  相似文献   

6.
Positively-charged gene delivery agents, such as cationic liposomes, typically prepared by mixing a cationic lipid and a neutral lipid in a 1 : 1 molar ratio, exhibit a fundamental flaw: on the one hand, the charge encourages cell uptake; on the other hand, the charge leads to aggregation in vivo with anionic serum components. We herein report a more phase-stable analogue of the zwitterionic and fusogenic lipid DOPE that allows for the reduction of the cationic lipid component of the liposome from 50 to 9 mol% with almost no apparent loss in transfection activity. This reduction in charge may induce important in vivo stability whilst still imparting high cell uptake and transgene expression.  相似文献   

7.
We report the use of switchable lipids to improve the endosomal escape and cytosolic delivery of cell‐impermeable compounds. The system is based on a conformational reorganization of the lipid structure upon acidification, as demonstrated by NMR spectroscopic studies. When incorporated in a liposome formulation, the switchable lipids triggered bilayer destabilization through fusion even in the presence of poly(ethylene glycol). We observed 88 % release of sulforhodamine B in 15 min at pH 5, and the liposome formulations demonstrated high stability at pH 7.4 for several months. By using sulforhodamine B as a model of a highly polar drug, we demonstrated fast cytosolic delivery mediated by endosomal escape in HeLa cells, and no toxicity.  相似文献   

8.
Membrane fusion results in the transport and mixing of (bio)molecules across otherwise impermeable barriers. In this communication, we describe the temporal control of targeted liposome–liposome membrane fusion and contents mixing using light as an external trigger. Our method relies on steric shielding and rapid, photoinduced deshielding of complementary fusogenic peptides tethered to opposing liposomal membranes. In an analogous approach, we were also able to demonstrate precise spatiotemporal control of liposome accumulation at cellular membranes in vitro.  相似文献   

9.
Liposomes are effective therapeutic delivery nanocarriers due to their ability to encapsulate and enhance the pharmacokinetic properties of a wide range of therapeutics. Two primary areas in which improvement is needed for liposomal drug delivery is to enhance the ability to infiltrate cells and to facilitate derivatization of the liposome surface. Herein, we report a liposome platform incorporating a cyclic disulfide lipid (CDL) for the dual purpose of enhancing cell entry and functionalizing the liposome membrane through thiol-disulfide exchange. In order to accomplish this, CDL-1 and CDL-2 , composed of lipoic acid (LA) or asparagusic acid (AA) appended to a lipid scaffold, were designed and synthesized. A fluorescence-based microplate immobilization assay was implemented to show that these compounds enable convenient membrane decoration through reaction with thiol-functionalized small molecules. Additionally, fluorescence microscopy experiments indicated dramatic enhancements in cellular delivery when CDLs were incorporated within liposomes. These results demonstrate that multifunctional CDLs serve as an exciting liposome system for surface decoration and enhanced cellular delivery.  相似文献   

10.
This paper reports the basic research on the possibility of using targeting treatment for ischemic heart disease with liposome as drug carrier. Studies have been performed on isolated rat cardiomyocytes, or isolated perfused rat and rabbit hearts. Results show that cardiomyocytes may interact with liposome through fusion, endocytosis, adsorption and molecular exchange of phospholipid. Forms of cellular uptake of liposome depend chiefly on the physicochemical properties of liposomes. Anoxia changes the pattern of liposome uptake by cardiomyocytes and increases uptake of liposomes. Uptake of liposomes, especially of positively charged liposomes by ischemic myocardium is significantly increased. The quantity of increase of liposome uptake is in the following order: ischemia-reperfusion area>peripheral area of the infarct>non-ischemic area>infarcted area. The above results indicate that liposome as drug carrier might promote the delivery of drug into ischemic myocardium and cardiomyocytes.  相似文献   

11.
Nanoliposomes are important carriers capable of packaging drugs for various delivery applications through passive targeting tumor sites by enhancing permeability and retention effect. Radiolabeled liposomes have potential applications in radiotherapy and diagnostic imaging. However, the physico-chemical instability of liposomes during manufacturing and storage limits their extensive application. Therefore, considerable numbers of studies have been made on the stability of liposomes over the last few years in order to overcome this problem. In this study, we attempted to prepare polymer-coated liposomes using water-soluble chitosan in order to enhance the stability of rhenium(III) chloride-incorporated liposomes. They were characterized by an electrophoretic light-scattering spectrophotometer, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectrometer, and phase-contrast microscopy. The chitosan-coated liposomes are spherical and the particle size is about 800–850 nm. Incorporation of chitosan into the liposome bilayer decreased rhenium(III) chloride release from the liposome due to an increased rigidity of the liposome membrane structure. Chitosan-coated liposomes showed a higher stability compared with the stability of non-coated liposomes. The release characteristics of rhenium(III) chloride encapsulated in the liposome were taken as a measure of stability of the liposome membrane.  相似文献   

12.
In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 °C) than above the transition temperature (above 25 °C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitation is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.  相似文献   

13.
The aim of this study was to prepare and characterize neutral, positively charged, negatively charged and fusogenic liposomes of different sizes that contain cyclosporine A (CyA) and to evaluate their immunosuppressive activity on human T-cells. Neutral liposomes containing CyA were prepared from dipalmitoylphosphatidylcholine (DPPC) and cholesterol using the solvent evaporation method. To prepare positively charged, negatively charged and fusogenic liposomes containing CyA; stearylamine (SA), dicetylphosphate (DCP) and dioleoylphosphatidylethanolamine (DOPE) were added to the neutral liposome formulation, respectively. To reduce the size of liposomes containing CyA, extrusion through polycarbonate filters (1000, 400 and 100 nm) was used. The liposomes were characterized by their size, zeta potential and encapsulation efficiency. The in vitro immunosuppressive effects of an aqueous solution of CyA and different liposomes containing CyA were determined on human T-cells by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. The mean diameter of the various multilamellar vesicle (MLV) liposomes containing CyA was between 1.76 and 2.49 μm. The encapsulation efficiency for the different MLV and extruded liposomes containing CyA ranged from 73% to 90%. In vitro immunosuppressive evaluation by T-cell culture showed that fusogenic liposomes have the best inhibitory effects on T-cell proliferation compared to the other liposomes. Reducing the size of the liposomes did not affect the in vitro immunosuppressive activity. The average IC50 for the aqueous solution of CyA and the neutral, positively charged, negatively charged and fusogenic liposomes containing CyA was 4.98 × 10−2, 7.38, 1.43, 3.84 × 10−3 and 7.93 × 10−5 mM, respectively. The results of this study indicate that fusogenic liposomes have the strongest immunosuppressive activity and could be considered as a suitable delivery system for CyA.  相似文献   

14.
The efficiencies of polyelectrolytes, i.e., polycations and polyanions, and several kinds of water-soluble polymers as fusogens on soybean phospholipid liposome (SL) and egg yolk phospholipid liposome (EL) were investigated by the fluorescence quenching method. There were optimal concentrations for the induction of fusion in every system. Polycations induced fusion of liposomes at very low concentration in comparison with other polymers. Poly(carboxylic acid)s induced fusion at relatively high concentration. A strong acidic polyanion with high molecular weight also induced fusion of liposomes. The induction efficiency of poly(ethylene glycol) on fusion was higher than other nonionic polymers. The efficiency of fusion of EL was lower than that of SL in all systems because of the higher stability of EL membrane. It was found that electrostatic interactions, hydrogen bonding and/or hydrophobic interaction between these water-soluble polymers and liposomal membranes played an important role on aggregation and fusion of liposomes.  相似文献   

15.
We have found an interesting immobilization technique of liposomes on electron-beam exposed resist surfaces. The immobilized liposomes have been visualized by the atomic force microscope and have shown well-organized three-dimensional physical structures, in which the liposomes maintain their shapes and sizes similar to those of the original design in prepared solution. The immobilization is based on a strong static charge interaction between the resist surface and the liposomes. Further experiments show that very strong charge in the surfaces produces the firm immobilization of the liposome. We believe these findings can be related to various liposome applications such as drug delivery system, electrochemical or biosensors, and nanoscale membrane function studies.  相似文献   

16.
Spontaneous receptor-free membrane fusion with pure lipid systems, used as a cell membrane model, is demonstrated with easy-to-handle lactose-derived catanionic vesicles. This fusion, mediated and controlled by phospholipids, emphasizes the great value of these nanovesicles for enhanced direct cytosolic drug delivery without the shortcomings linked with endocytic pathways.  相似文献   

17.
Tilted peptides are known to insert in lipid bilayers with an oblique orientation, thereby destabilizing membranes and facilitating membrane fusion processes. Here, we report the first direct visualization of the interaction of tilted peptides with lipid membranes using in situ atomic force microscopy (AFM) imaging. Phase-separated supported dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers were prepared by fusion of small unilamellar vesicles and imaged in buffer solution, in the absence and in the presence of the simian immunodeficiency virus (SIV) peptide. The SIV peptide was shown to induce the rapid appearance of nanometer scale bilayer holes within the DPPC gel domains, while keeping the domain shape unaltered. We attribute this behavior to a local weakening and destabilization of the DPPC domains due to the oblique insertion of the peptide molecules. These results were directly correlated with the fusogenic activity of the peptide as determined using fluorescently labeled DOPC/DPPC liposomes. By contrast, the nontilted ApoE peptide did not promote liposome fusion and did not induce bilayer holes but caused slight erosion of the DPPC domains. In conclusion, this work provides the first direct evidence for the production of stable, well-defined nanoholes in lipid bilayer domains by the SIV peptide, a behavior that we have shown to be specifically related to the tilted character of the peptide. A molecular mechanism underlying spontaneous insertion of the SIV peptide within lipid bilayers and the subsequent removal of bilayer patches is proposed, and its relevance to membrane fusion processes is discussed.  相似文献   

18.
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations.

We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.  相似文献   

19.
Liposomes suspended in aqueous electrolyte solutions can adhere at mercury electrodes. The adhesion is a complex process that starts with the docking and opening and leads to a spreading, finally resulting in the formation of islands of adsorbed lecithin molecules. The adhesion process can be followed by chronoamperometry, and a detailed analysis of the macroscopic and microscopic kinetics can be performed yielding rate constants and activation parameters. By using giant unilamellar liposomes and multilamellar liposomes, the effect of lamellarity and liposome size could be elucidated for liposomes in the liquid crystalline, gel, and superlattice phase states. Below the phase transition temperature, the time constant of opening of the liposomes (i.e., the irreversible binding of the lecithin molecules on the preliminary contact interface liposome|mercury and the therewith associated disintegration of the liposome membrane on that spot) is shown to be strongly size dependent. The activation energy, however, of that process is size independent with the exception of very small liposomes. That size dependence of time constants is a result of the size dependence of the initial contact area. The time constant and the activation energies of the spreading step exhibit a strong size dependence, which could be shown to be due to the size dependence of rate and activation energy of pore formation. Pore formation is necessary to release the solution included in the liposomes. This understanding was corroborated by addition of the pore inducing peptide Mastoparan X to the liposome suspension. The obtained results show that electrochemical studies of liposome adhesion on mercury electrodes can be used as a biomimetic tool to understand the effect of membrane properties on vesicle fusion.  相似文献   

20.
通过改变脂质体中磷脂成分, 构建了不同电性的脂质体. 利用表面活性剂介导方法, 将截短的金黄色葡萄球菌细胞膜上的组氨酸激酶AgrC(AgrCTM6-7C)蛋白重构到不同电性的脂质体上. 结果表明, 阴离子脂质体对AgrCTM6-7C蛋白的镶嵌效率明显高于阳离子脂质体, 约60%~70%镶嵌至阴离子脂质体中的AgrCTM6-7C蛋白的细胞质域朝向脂质体囊泡的外部, 并保持较高活性. 利用圆二色光谱比较了AgrCTM6-7C蛋白在表面活性剂胶束和脂质体中的二级结构稳定性, 发现阴离子脂质体对AgrCTM6-7C蛋白的二级结构具有一定的保护作用, 可明显提高蛋白的热稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号