首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aqueous zinc (Zn) batteries have been considered as promising candidates for grid‐scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc–organic battery with a phenanthrenequinone macrocyclic trimer (PQ‐MCT) cathode, a zinc‐foil anode, and a non‐aqueous electrolyte of a N,N‐dimethylformamide (DMF) solution containing Zn2+. The non‐aqueous nature of the system and the formation of a Zn2+–DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from ?70 to 150 °C.  相似文献   

2.
Aqueous zinc (Zn) batteries have been considered as promising candidates for grid-scale energy storage. However, their cycle stability is generally limited by the structure collapse of cathode materials and dendrite formation coupled with undesired hydrogen evolution on the Zn anode. Herein we propose a zinc–organic battery with a phenanthrenequinone macrocyclic trimer (PQ-MCT) cathode, a zinc-foil anode, and a non-aqueous electrolyte of a N,N-dimethylformamide (DMF) solution containing Zn2+. The non-aqueous nature of the system and the formation of a Zn2+–DMF complex can efficiently eliminate undesired hydrogen evolution and dendrite growth on the Zn anode, respectively. Furthermore, the organic cathode can store Zn2+ ions through a reversible coordination reaction with fast kinetics. Therefore, this battery can be cycled 20 000 times with negligible capacity fading. Surprisingly, this battery can even be operated in a wide temperature range from −70 to 150 °C.  相似文献   

3.
Cost‐effective aqueous rechargeable batteries are attractive alternatives to non‐aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc‐ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high‐capacity Zn metal as the anode material. Herein, we report a layered calcium vanadium oxide bronze as the cathode material for aqueous Zn batteries. For the storage of the Zn2+ ions in the aqueous electrolyte, we demonstrate that the calcium‐based bronze structure can deliver a high capacity of 340 mA h g?1 at 0.2 C, good rate capability, and very long cycling life (96 % retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 W h kg?1 at a power density of 53.4 W kg?1.  相似文献   

4.
Rechargeable Zinc batteries (RZBs) are considered a potent competitor for next-generation electrochemical devices, due to their multiple advantages. Nevertheless, traditional aqueous electrolytes may cause serious hazards to long-term battery cycling through fast capacity fading and poor Coulombic efficiency (CE), which happens due to complex reaction kinetics in aqueous systems. Herein, we proposed the novel adoption of the protic amide solvent, N-methyl formamide (NMF) as a Zinc battery electrolyte, which possesses a high dielectric constant and high flash point to promote fast kinetics and battery safety simultaneously. Dendrite-free and granular Zn deposition in Zn-NMF electrolyte assures ultra-long lifespan of 2000 h at 2.0 mA cm−2/2.0 mAh cm−2, high CE of 99.57 %, wide electrochemical window (≈3.43 V vs. Zn2+/Zn), and outstanding durability up to 10.0 mAh cm−2. This work sheds light on the efficient performance of the protic non-aqueous electrolyte, which will open new opportunities to promote safe and energy-dense RZBs.  相似文献   

5.
Aqueous rechargeable batteries have attracted attention owning to their advantages of safety, low cost, and sustainability, while the limited electrochemical stability window (1.23 V) of water leads to their failure in competition with organic-based lithium-ion batteries. Herein, we report an alkali–acid Zn–PbO2 hybrid aqueous battery obtained by coupling an alkaline Zn anode with an acidic PbO2 cathode. It shows the capability to deliver an impressively high open-circuit voltage (Voc) of 3.09 V and an operate voltage of 2.95 V at 5 mA cm−2, thanks to the contribution of expanding the voltage window and the electrochemical neutralization energy from the alkali–acid asymmetric-electrolyte hybrid cell. The hybrid battery can potentially deliver a large area capacity over 2 mAh cm−2 or a high energy density of 252.39 Wh kg−1 and shows almost no fading in area capacity over 250 charge–discharge cycles.  相似文献   

6.
Rechargeable aqueous Zn-VOx batteries are attracting attention in large scale energy storage applications. Yet, the sluggish Zn2+ diffusion kinetics and ambiguous structure–property relationship are always challenging to fulfil the great potential of the batteries. Here we electrodeposit vanadium oxide nanobelts (VO-E) with highly disordered structure. The electrode achieves high capacities (e.g., ≈5 mAh cm−2, 516 mAh g−1), good rate and cycling performances. Detailed structure analysis indicates VO-E is composed of integrated amorphous-crystalline nanoscale domains, forming an efficient heterointerface network in the bulk electrode, which accounts for the good electrochemical properties. Theoretical calculations indicate that the amorphous-crystalline heterostructure exhibits the favorable cation adsorption and lower ion diffusion energy barriers compared to the amorphous and crystalline counterparts, thus accelerating charge carrier mobility and electrochemical activity of the electrode.  相似文献   

7.
The corrosion, parasitic reactions, and aggravated dendrite growth severely restrict development of aqueous Zn metal batteries. Here, we report a novel strategy to break the hydrogen bond network between water molecules and construct the Zn(TFSI)2-sulfolane-H2O deep eutectic solvents. This strategy cuts off the transfer of protons/hydroxides and inhibits the activity of H2O, as reflected in a much lower freezing point (<−80 °C), a significantly larger electrochemical stable window (>3 V), and suppressed evaporative water from electrolytes. Stable Zn plating/stripping for over 9600 h was obtained. Based on experimental characterizations and theoretical simulations, it has been proved that sulfolane can effectively regulate solvation shell and simultaneously build the multifunctional Zn-electrolyte interface. Moreover, the multi-layer homemade modular cell and 1.32 Ah pouch cell further confirm its prospect for practical application.  相似文献   

8.
The brain-storm of designing low-cost and commercialized eutectic electrolytes for zinc (Zn)-based electrochemical energy storage (ZEES) remains unresolved and attractive, especially when implementing it at low temperatures. Here, we report an appealing layout of advancing chlorine-functionalized eutectic (Cl-FE) electrolytes via exploiting Cl anion-induced eutectic interaction with Zn acetate solutions. This novel eutectic liquid shows high affinity to collaborate with 1,3-dioxolane (DOL) and is prone to constitute Cl-FE/DOL-based electrolytes with a unique inner/outer eutectic solvation sheath for the better regulation of Zn-solvating neighboring and reconstruction of H-bonding. The side reactions are effectively restricted on Zn anodes and a high Coulombic efficiency of 99.5 % can be achieved over 1000 cycles at −20 °C with Zn//Cu setups. By prototyping scale-up Zn-ion pouch cells using the optimal eutectic liquid of 3ZnOAc1.2Cl1.8-DOL, we obtain improved electrochemical properties at −20 °C with a high capacitance of 203.9 F g−1 at 0.02 A g−1 in a range of 0.20–1.90 V and long-term cycling ability with 95.3 % capacitance retention at 0.2 A g−1 over 3,000 cycles. Overall, the proposal of ideal Cl-FE/DOL-based electrolytes guides the design of sub-zero and endurable aqueous ZEES devices and beyond.  相似文献   

9.
Aqueous rechargeable Mg batteries (ARMBs) usually fail from severe anode passivation, alternatively, executing quasi-underpotential Mg plating/stripping chemistry (UPMC) on a proper heterogeneous metal substrate is a crucial remedy. Herein, a stable UPMC on Zn substrate is initially achieved in new hydrated eutectic electrolytes (HEEs), delivering an ultralow UPMC overpotential and high energy/voltage plateau of ARMBs. The unique eutectic property remarkably expands the lower limit of electrochemical stability window (ESW) of HEEs and undermines the competition between hydrogen evolution/corrosion reactions and UPMC, enabling a reversible UPMC. The UPMC is carefully revealed by multiple characterizations, which shows a low overpotential of 50 mV at 0.1 mA cm−2 over 550 h. With sulfonic acid-doped polyaniline (SPANI) cathodes, UPMC-based full cells show high energy/power densities of 168.6 Wh kg−1/2.1 kWh kg−1 and voltage plateau of 1.3 V, far overwhelming conventional aqueous systems.  相似文献   

10.
A new approach to expand the accessible voltage window of electrochemical energy storage systems, based on so-called “water-in-salt” electrolytes, has been expounded recently. Although studies of transport in concentrated electrolytes date back over several decades, the recent demonstration that concentrated aqueous electrolyte systems can be used in the lithium ion battery context has rekindled interest in the electrochemical properties of highly concentrated aqueous electrolytes. The original aqueous lithium ion battery conception was based on the use of concentrated solutions of lithium bis(trifluoromethanesulfonyl)imide, although these electrolytes still possess some drawbacks including cost, toxicity, and safety. In this work we describe the electrochemical behavior of a simple 1 : 1 electrolyte based on highly concentrated aqueous solutions of potassium fluoride (KF). Highly ordered pyrolytic graphite (HOPG) is used as well-defined model carbon to study the electrochemical properties of the electrolyte, as well as its basal plane capacitance, from a microscopic perspective: the KF electrolyte exhibits an unusually wide potential window (up to 2.6 V). The faradaic response on HOPG is also reported using K3Fe(CN)6 as a model redox probe: the highly concentrated electrolyte provides good electrochemical reversibility and protects the HOPG surface from adsorption of contaminants. Moreover, this electrolyte was applied to symmetrical supercapacitors (using graphene and activated carbon as active materials) in order to quantify its performance in energy storage applications. It is found that the activated carbon and graphene supercapacitors demonstrate high gravimetric capacitance (221 F g−1 for activated carbon, and 56 F g−1 for graphene), a stable working voltage window of 2.0 V, which is significantly higher than the usual range of water-based capacitors, and excellent stability over 10 000 cycles. These results provide fundamental insight into the wider applicability of highly concentrated electrolytes, which should enable their application in future of energy storage technologies.

The stability of water-in-salt electrolyte systems is investigated using highly concentrated solutions of KF(aq) with graphite as a model system.  相似文献   

11.
Two-dimensional covalent organic frameworks (COFs) have emerged as promising materials for energy storage applications exhibiting enhanced electrochemical performance. While most of the reported organic cathode materials for zinc-ion batteries use carbonyl groups as electrochemically-active sites, their high hydrophilicity in aqueous electrolytes represents a critical drawback. Herein, we report a novel and structurally robust olefin-linked COF-TMT-BT synthesized via the aldol condensation between 2,4,6-trimethyl-1,3,5-triazine (TMT) and 4,4′-(benzothiadiazole-4,7-diyl)dibenzaldehyde (BT), where benzothiadiazole units are explored as novel electrochemically-active groups. Our COF-TMT-BT exhibits an outstanding Zn2+ storage capability, delivering a state-of-the-art capacity of 283.5 mAh g−1 at 0.1 A g−1. Computational and experimental analyses reveal that the charge-storage mechanism in COF-TMT-BT electrodes is based on the supramolecularly engineered and reversible Zn2+ coordination by the benzothiadiazole units.  相似文献   

12.
Zn is a promising anode for aqueous energy storage owing to it intrinsic superior properties such as large capacity, abundant reserves, low potential and safety. But, the growth of dendrites during charge and discharge leads to a decrease in reversibility. In addition, further development of zinc-ion hybrid capacitors (ZICs) is seriously challenging because of the lack of an exceptional cathode. Herein, we use ZIF-8 annealed at 500 °C (annealed ZIF-8) as a host material for stable and dendrite-free Zn anodes. Utilization of annealed ZIF-8 results in dendrite-free Zn deposition and stripping as a result of its porous construction, which contains trace Zn. Furthermore, we firstly proposed innovative N,O dual-doped carbon which was designed by the derived ZIF-8 (ZIF-8 derived C) as cathode for high-energy and power-density ZICs. The new ZIC assembled by Zn@annealed ZIF-8 anode and ZIF-8 derived C cathode provides a capacity of 135.5 mAh g−1 and an energy density of 108.4 Wh kg−1 with a power density of 800 W kg−1 at 1.0 A g−1. In addition, it shows outstanding cycling stability of 91% capacity retention after 6000 cycles at 5.0 A g−1. Moreover, the solid-state ZICs can drive LEDs and smart watches. This ZIC holds promise for the practical application of supercapacitors.  相似文献   

13.
Aqueous Zn batteries are attracting extensive attentions, but their application is still hindered by H2O-induced Zn-corrosion and hydrogen evolution reactions. Addition of organic solvents into aqueous electrolytes to limit the H2O activity is a promising solution, but at the cost of greatly reduced Zn anode kinetics. Here we propose a simple strategy for this challenge by adding 50 mM iodine ions into an organic-water (1,2-dimethoxyethane (DME)+water) hybrid electrolyte, which enables the electrolyte simultaneously owns the advantages of low H2O activity and accelerated Zn kinetics. We demonstrate that the DME breaks the H2O hydrogen-bond network and exclude H2O from Zn2+ solvation shell. And the I is firmly adsorbed on the Zn anode, reducing the Zn2+ de-solvation barrier from 74.33 kJ mol−1 to 32.26 kJ mol−1 and inducing homogeneous nucleation behavior. With such electrolyte, the Zn//Zn symmetric cell exhibits a record high cycling lifetime (14.5 months) and achieves high Zn anode utilization (75.5 %). In particular, the Zn//VS2@SS full cell with the optimized electrolyte stably cycles for 170 cycles at a low N : P ratio (3.64). Even with the cathode mass-loading of 16.7 mg cm−2, the full cell maintains the areal capacity of 0.96 mAh cm−2 after 1600 cycles.  相似文献   

14.
Aqueous electrolytes typically suffer from poor electrochemical stability; however, eutectic aqueous solutions—25 wt.% LiCl and 62 wt.% H3PO4—cooled to −78 °C exhibit a significantly widened stability window. Integrated experimental and simulation results reveal that, upon cooling, Li+ ions become less hydrated and pair up with Cl, ice-like water clusters form, and H⋅⋅⋅Cl bonding strengthens. Surprisingly, this low-temperature solvation structure does not strengthen water molecules’ O−H bond, bucking the conventional wisdom that increasing water's stability requires stiffening the O−H covalent bond. We propose a more general mechanism for water's low temperature inertness in the electrolyte: less favorable solvation of OH and H+, the byproducts of hydrogen and oxygen evolution reactions. To showcase this stability, we demonstrate an aqueous Li-ion battery using LiMn2O4 cathode and CuSe anode with a high energy density of 109 Wh/kg. These results highlight the potential of aqueous batteries for polar and extraterrestrial missions.  相似文献   

15.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   

16.
Aqueous zinc metal batteries hold great promise for large-scale energy storage because of their high safety, rich material resources and low cost. However, the freeze of aqueous electrolytes hinders low-temperature operation of the batteries. Here, aqueous localized anion-cation aggregated electrolytes composed of Zn(BF4)2 as the salt and tetrahydrofuran (THF) as the diluent, are developed to improve the low-temperature performance of the Zn anode. THF promotes the inclusion of BF4 in the solvation sheath of Zn2+, facilitating the formation of ZnF2-rich solid-electrolyte-interphase. THF also affects the hydrogen bonding between neighboring H2O molecules, effectively lowering the freezing point. Therefore, the full cells of Zn||polyaniline (PANI) exhibit an ultralong cycle life of 8000 cycles with an average Coulombic efficiency of 99.99 % at −40 °C. Impressively, the pouch cells display a high capacity retention of 86.2 % after 500 cycles at −40 °C, which demonstrates the great prospect of such electrolytes in cold regions. This work provides new insights for the design of low-temperature aqueous electrolytes.  相似文献   

17.
Aqueous zinc-ion batteries (AZBs) show promises for large-scale energy storage. However, the zinc utilization rate (ZUR) is generally low due to side reactions in the aqueous electrolyte caused by the active water molecules. Here, we design a novel solvation structure in the electrolyte by introduction of sulfolane (SL). Theoretical calculations, molecular dynamics simulations and experimental tests show that SL remodels the primary solvation shell of Zn2+, which significantly reduces the side reactions of Zn anode and achieves high ZUR under large capacities. Specifically, the symmetric and asymmetric cells could achieve a maximum of ∼96 % ZUR at an areal capacity of 24 mAh cm−2. In a ZUR of ∼67 %, the developed Zn−V2O5 full cell can be stably cycled for 500 cycles with an energy density of 180 Wh kg−1 and Zn-AC capacitor is stable for 5000 cycles. This electrolyte structural engineering strategy provides new insight into achieving high ZUR of Zn anodes for high performance AZBs.  相似文献   

18.
In aqueous electrolytes, the uncontrollable interfacial evolution caused by a series of factors such as pH variation and unregulated Zn2+ diffusion would usually result in the rapid failure of metallic Zn anode. Considering the high correlation among various triggers that induce the anode deterioration, a synergistic modulation strategy based on electrolyte modification is developed. Benefitting from the unique pH buffer mechanism of the electrolyte additive and its capability to in situ construct a zincophilic solid interface, this synergistic effect can comprehensively manage the thermodynamic and kinetic properties of Zn anode by inhibiting the pH variation and parasitic side reactions, accelerating de-solvation of hydrated Zn2+, and regulating the diffusion behavior of Zn2+ to realize uniform Zn deposition. Thus, the modified Zn anode can achieve an impressive lifespan at ultra-high current density and areal capacity, operating stably for 609 and 209 hours at 20 mA cm−2, 20 mAh cm−2 and 40 mA cm−2, 20 mAh cm−2, respectively. Based on this exceptional performance, high loading Zn||NH4V4O10 batteries can achieve excellent cycle stability and rate performance. Compared with those previously reported single pH buffer strategies, the synergistic modulation concept is expected to provide a new approach for highly stable Zn anode in aqueous zinc-ion batteries.  相似文献   

19.
The electrochemical reactions for the storage of Zn2+ while embracing more electron transfer is a foundation of the future high-energy aqueous zinc batteries. Herein, we report a six-electron transfer electrochemistry of nano-sized TeO2/C (n-TeO2/C) cathode by facilitating the reversible conversion of TeO2↔Te and Te↔ZnTe. Benefitting from the integrated conductive nanostructure and the proton-rich environment in providing optimized electrochemical kinetics (facilitated Zn2+ uptake and high electronic conductivity) and feasible thermodynamic process (low Gibbs free energy change), the as-prepared n-TeO2/C with stable cycling performance exhibits a superior reversible capacity of over 800 mAh g−1 at 0.1 A g−1. A precise understanding of the reaction mechanism via ex situ and in situ characterizations presents that the reversible six-electron transfer reaction is proton-dependent, and a proton generating and consuming mechanism of three-phase conversion n-TeO2/C in the weakly acidic electrolyte is thoroughly revealed.  相似文献   

20.
Compared to the traditional transition metal layered double hydroxides, transition metal layered carbonate double hydroxides (TMC-LDHs) possess superior electrochemical performance in theory. But TMC-LDHs have not received its deserved attention, especially for application in the energy storage field. In this work, a flower-like TMC-LDH (Ni0.75Co0.25(CO3)0.125(OH)2, NCCO) material was successfully prepared by hydrothermal method, which exhibits a high specific capacity of 306.8 mAh g−1 (0.52 mAh cm−2) at 0.5 A g−1 with capacity retention of 70.5 % after 2000 cycles. The solid-state hybrid supercapacitor device NCCO//PVA/KOH//IHPC based on the prepared NCCO material and an interconnected hierarchical porous carbon (IHPC) delivers a high specific energy of 50.96 Wh kg−1 at a specific power of 1.06 kW kg−1, and a high specific energy of 36.39 Wh kg−1 still can be delivered at a high specific power of 10.49 kW kg−1. More than 181.2 % of initial specific capacity is retained after 12000 cycles. The specific energy, energy retention under large specific power, and the cycle stability of the assembled device are better than most of the solid-state hybrid supercapacitors that have been reported. These results demonstrate the promising prospect of the TMC-LDH material in the practical application in advanced solid-state supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号