首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
1H NMR spectra and fluorescence analysis revealed that the molecular shuttle and pseudorotaxane assembly of Q[7] with guest G2+ can be significantly switched via protonation and deprotonation of the terminal carboxylates of the guest.  相似文献   

2.
[reaction: see text] A guest molecule-a bis-N-tetraethyleneglycol-substituted 3,3'-difluorobenzidine derivative-has been synthesized, and its complexation with the host, cyclobis(paraquat-p-phenylene), has been investigated. This host-guest complex was then employed in the template-directed synthesis of a blue-colored [2]rotaxane. The color of this [2]rotaxane arises from the charge-transfer absorption band between the HOMO of the guest and the LUMO of the host. This host-guest complex, and the derived [2]rotaxane, completes the donor-acceptor-based RGB (red/green/blue) color complex set.  相似文献   

3.
The separation of dihalobenzene isomers, such as dichlorobenzene isomers and difluorobenzene isomers, has a high practical value in both synthetic chemistry and industrial production. Herein we provide a simple to operate and energy‐efficient adsorptive separation method using nonporous adaptive crystals of perbromoethylated pillar[5]arene ( BrP5 ) and pillar[6]arene ( BrP6 ). BrP6 crystals show a preference towards the ortho isomer of dichlorobenzene in isomer mixtures, but cannot discriminate difluorobenzene isomers. Single‐crystal structures reveal that this selectivity is derived from the stability of the new host–guest crystal structure of BrP6 after uptake of the preferred guest and the binding strength of the host–guest interactions. Furthermore, because of the reversible transition between guest‐free and guest‐loaded structures, BrP6 crystals are recyclable.  相似文献   

4.
《化学:亚洲杂志》2017,12(19):2576-2582
Complexation between (O ‐methyl)6‐2,6‐helic[6]arene and a series of tertiary ammonium salts was described. It was found that the macrocycle could form stable complexes with the tested aromatic and aliphatic tertiary ammonium salts, which were evidenced by 1H NMR spectra, ESI mass spectra, and DFT calculations. In particular, the binding and release process of the guests in the complexes could be efficiently controlled by acid/base or chloride ions, which represents the first acid/base‐ and chloride‐ion‐responsive host–guest systems based on macrocyclic arenes and protonated tertiary ammonium salts. Moreover, the first 2,6‐helic[6]arene‐based [2]rotaxane was also synthesized from the condensation between the host–guest complex and isocyanate.  相似文献   

5.
Mechanical bonds have been utilized as promising motifs to construct mechanically interlocked aerogels (MIAs) with mechanical adaptivity and multifunctionality. However, fabricating such aerogels with not only precise chemical structures but also dynamic features remains challenging. Herein, we present MIAs carrying dense [2]rotaxane units, which bestow both the stability and flexibility of the aerogel network. Owing to the stable chemical structure of a [2]rotaxane, MIAs possessing a precise and full-scale mechanically interlocked network could be fabricated with the aid of diverse solvents. In addition, the dynamic nature of the [2]rotaxane resulted in morphologies and mechanical performances of the MIAs that can be dramatically modulated under chemical stimuli. We hope that the structure–property relationship in MIAs will facilitate the development of mechanically interlocked materials and provide novel opportunities toward constructing smart materials with multifunctionalities.  相似文献   

6.
A new cyclic [4]rotaxane composed of two flexible bis-macrocycles and two rigid axles is described. Each bis-macrocycle consists of two rings attached to antipodal meso positions of a central Zn porphyrin through single C-C bonds. Each ring incorporates a 2,9-diphenyl-1,10-phenanthroline chelation site. The axles contain two coplanar bidentate sites derived from the 2,2'-bipyridine motif. The building blocks were assembled by using a one-pot threading-and-stoppering reaction, which afforded the [4]rotaxane in 50% yield. The "gathering-and-threading" effect of copper(I) was utilised in the formation of a [4]pseudorotaxane, which was immediately converted to the corresponding [4]rotaxane by a quadruple CuAAC stoppering reaction. The rotaxane contains two face-to-face zinc porphyrins, which allowed the coordination of ditopic guest substrates. The rotaxane host showed remarkable flexibility and was able to adjust its conformation to the guest size. It can be distended and accommodate rod-like guests of 2.6 to 15.8 ? in length.  相似文献   

7.
We report the preparation of [2]rotaxanes containing an electrochemically and optically active osmium(II) bipyridyl macrocyclic component mechanically bonded with cationic pyridinium axles. Such interlocked host systems are demonstrated to recognise and sense anionic guest species as shown by 1H NMR, luminescence and electrochemical studies. The rotaxanes can be surface assembled on to gold electrodes through anion templation under click copper(I)‐catalysed Huisgen cycloaddition conditions to form rotaxane molecular films, which, after template removal, respond electrochemically and selectively to chloride.  相似文献   

8.
The unprecedented application of a chiral halogen‐bonding [3]rotaxane host system for the discrimination of stereo‐ and E/Z geometric isomers of a dicarboxylate anion guest is described. Synthesised by a chloride anion templation strategy, the [3]rotaxane host recognises dicarboxylates through the formation of 1:1 stoichiometric sandwich complexes. This process was analysed by molecular dynamics simulations, which revealed the critical synergy of halogen and hydrogen bonding interactions in anion discrimination. In addition, the centrally located chiral (S)‐BINOL motif of the [3]rotaxane axle component facilitates the complexed dicarboxylate species to be sensed via a fluorescence response.  相似文献   

9.
This paper describes the synthesis of host 1 by the double bridging reaction of bis-ns-CB[10] with 2 under acidic conditions. Host 1 functions as a double cavity host for aliphatic and aromatic ammonium ions (3-17) in water. Conducting the bridging reaction in the presence of guest 4 delivers [3]rotaxane 1·4(2) by a clipping process.  相似文献   

10.
An ethylene glycol-decorated [6]cyclo-meta-phenylene (CMP) macrocycle was synthesized and utilized as a subunit to construct a fourfold AuI2−aryl metallacycle with an overall square arrangement. The corners consist of rigid dinuclear gold(I) complexes previously known to form only triangular metallacycles. The interplay between the conformational flexibility of the [6]CMP macrocycle and the rigid dinuclear gold(I) moieties enable the square geometry, as revealed by single-crystal X-ray diffraction. The formation of the gold complex shows size-selectivity compared to an alternative route using platinum(II) corner motifs. Upon reductive elimination, an all-organic ether-decorated carbon nanoring was obtained. Investigation as a host for the complexation of large guest molecules with a suitable convex π-surfaces was accomplished using isothermal NMR binding titrations. Association constants for [6]cycloparaphenylene ([6]CPP), [7]CPP, C60, and C70 were determined.  相似文献   

11.
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy‐chain‐containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self‐sorting strategy is demonstrated, involving an ABB‐type (A for host, dibenzo‐24‐crown‐8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo‐21‐crown‐7 (B21C7), in which the assembled species in hydrogen‐bonding‐supported solvent only includes a novel daisy‐chain‐containing hetero[4]pseudorotaxane. The found self‐sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self‐sorting strategy is integrative to undertake self‐recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self‐sorting system can be used for the efficient one‐pot synthesis of a daisy‐chain‐containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1H NMR spectroscopy and high‐resolution electrospray ionization (HR‐ESI) mass spectrometry.  相似文献   

12.
A new cyclic [4]rotaxane composed of two flexible bis‐macrocycles and two rigid axles is described. Each bis‐macrocycle consists of two rings attached to antipodal meso positions of a central Zn porphyrin through single C? C bonds. Each ring incorporates a 2,9‐diphenyl‐1,10‐phenanthroline chelation site. The axles contain two coplanar bidentate sites derived from the 2,2′‐bipyridine motif. The building blocks were assembled by using a one‐pot threading‐and‐stoppering reaction, which afforded the [4]rotaxane in 50 % yield. The “gathering‐and‐threading” effect of copper(I) was utilised in the formation of a [4]pseudorotaxane, which was immediately converted to the corresponding [4]rotaxane by a quadruple CuAAC stoppering reaction. The rotaxane contains two face‐to‐face zinc porphyrins, which allowed the coordination of ditopic guest substrates. The rotaxane host showed remarkable flexibility and was able to adjust its conformation to the guest size. It can be distended and accommodate rod‐like guests of 2.6 to 15.8 Å in length.  相似文献   

13.
Light-driven multicolor supramolecular systems mainly rely on the doping of dyes or a photo-reaction to produce unidirectional luminescence. Herein, we use visible light to drive the bidirectional reversible multicolor supramolecular shuttle from blue to green, white, yellow, up to orange by simple encapsulation of spiropyran-modified cyanostilbene (BCNMC) by the macrocyclic cucurbit[8]uril (CB[8]) monomer. The resultant host–guest complex displayed enhanced fluorescence properties, i.e. the multicolor fluorescence shuttle changed from blue to orange in the dark within 2 hours and reverted to the original state upon visible light irradiation for 30 s. Benefiting from the sensitivity of the spiropyran moiety to light, it can spontaneously isomerize from the ring-opened state to a ring-closed isomer in aqueous solution, and this photo-isomerization reaction is a reversible process under visible light irradiation, leading to the multicolor luminescence supramolecular shuttle as a result of intramolecular energy transfer. In addition, the light also drove the reversible conversion of the topological morphology of the host–guest complex from two-dimensional nanoplatelets to nanospheres. Different from the widely reported molecular rotaxane “shuttle”, the spiropyran supramolecular shuttle confined in the macrocyclic host CB[8] not only modulated a reversible topological morphology by light but also exhibited multicolor luminescence, which was successfully applied in programmed and rewritable information encryption.  相似文献   

14.
By taking advantage of the fact that cucurbit[6]uril (CB[6]) forms exceptionally stable host–guest complexes with protonated amines, and that its homologue CB[8] can encapsulate a pair of electron‐rich and electron‐deficient guest molecules to form a stable 1:1:1 complex, we synthesized a novel dendritic [10]pseudorotaxane, or second‐generation rotaxane dendrimer (from a topological point of view), in which 13 molecular components are held together by noncovalent interactions. A triply branched molecule containing an electron‐deficient bipyridinium unit on each branch formed a branched [4]pseudorotaxane with 3 equivalents of CB[8]. Addition of 3 equivalents of 2,6‐dihydroxynaphthalene produced a first‐generation rotaxane dendrimer, which was characterized by NMR spectroscopy and CSI‐MS. The reaction of the branched [4]pseudorotaxane with 3 equivalents of a triply branched molecule that has an electron‐donor unit at one arm and CB[6]‐containing units at the other two gave the dendritic [10]pseudorotaxane, the structure of which was confirmed by NMR spectroscopy, UV/Vis titration experiments, and CSI‐MS.  相似文献   

15.
Water-soluble small organic photothermal agents (PTAs) over NIR-II biowindow (1000–1350 nm) are highly desirable, but the rarity greatly limits their applications. Based on a water-soluble double-cavity cyclophane GBox-44+ , we report a class of host–guest charge transfer (CT) complexes as structurally uniform PTAs for NIR-II photothermal therapy. As a result of its high electron-deficiency, GBox-44+ can bind different electron-rich planar guests with a 1 : 2 host/guest stoichiometry to readily tune the CT absorption band that extends to the NIR-II region. When using a diaminofluorene guest substituted with an oligoethylene glycol chain, the host–guest system realized both good biocompatibility and enhanced photothermal conversion at 1064 nm, and was then exploited as a high-efficiency NIR-II PTA for cancer cell and bacterial ablation. This work broadens the potential applications of host–guest cyclophane systems and provides a new access to bio-friendly NIR-II photoabsorbers with well-defined structures.  相似文献   

16.
Herein, a host–guest interaction–controlled photoproduct created by using cucurbit[7]uril (Q[7])-based pseudorotaxane structures is reported. The assembly exhibited controlled behavior towards the reduction of the ethylene (C=C) bond in the tetrakis(pyridin-4-yl)ethylene (TPyE) guest molecule under UV light irradiation. This can be attributed to the Q[7] encapsulation masking the four pyridinium arms of the guest, which inhibits planarization of the TPyE core to form the cyclization product. In particular, the strong affinity of Q[7] for the butyl-substituted guest (TPyE-4C) led to an unusual radical fluorescence emission of the photoirradiation-triggered intermediate of the guest molecule being observed in aqueous solution. This work provides a valuable paradigm and new insight for macrocycle-based host−guest interactions in supramolecular catalysis and luminescent radical materials.  相似文献   

17.
Two functional main‐chain linear polyrotaxanes, one a covalent polymeric chain that threads through many macrocycles ( P1 ) and the other a poly[n]rotaxane chain that is composed of many repeating rotaxane units ( P2 ), were synthesized by employing strong crown‐ether/ammonium‐based ( DB24C8 / DBA ) host–guest interactions and click chemistry. Energy transfer between the wheel and axle units in both polyrotaxanes was used to provide insight into the conformational information of their resulting polyrotaxanes. Steady‐state and time‐resolved spectroscopy were performed to understand the conformation differences between polymers P1 and P2 in solution. Additional investigations by using dynamic/static light scattering and atomic force microscopy illustrated that polymer P1 was unbending and had a rigid rod‐like structure, whilst polymer P2 was curved and flexible. This flexible topology facilitated the self‐assembly of polymer P2 into relatively large ball‐shaped particles. In addition, the energy transfer between the wheel and axle units was controlled by the addition of specific anions or base. The anion‐induced energy enhancement was attributed to a change in electrostatic interactions between the polymer chains. The base‐driven molecular shuttle broke the DB24C8 / DBA host–guest interactions. These results confirm that both intra‐ and intermolecular electrostatic interactions are crucial for modulating conformational topology, which determines the assembly of polyrotaxanes in solution.  相似文献   

18.
A rotaxane crosslinker (RC) is known to toughen the resulting rotaxane crosslinked polymer (RCP) via a stress dispersion effect that is attributed to the movable nature of the crosslinking structure. To evaluate this toughening mechanism in detail, a series of structure-definite RCs equipped with different axle end structures or different numbers of wheel components were synthesized, and subjected to free radical polymerization with a vinyl monomer to obtain RCPs. Analyses of the obtained RCPs revealed that the size of the axle end structure should be well-balanced to produce a strong toughening effect, and a [3]rotaxane crosslinker works more effectively than [2]rotaxane to toughen RCPs. The mobility of the crosslinking points, in terms of rotational and flipping movements, was more crucial to toughening the RCP than that of translational movement along the axle. The first observation of the above crucial findings proved the utility of the systematic molecular design used in this study.  相似文献   

19.
Two types of supramolecular polymers based on cyclodextrins were prepared. One was a host–guest type, and the other was a polyrotaxane type. When a guest part was covalently attached to cyclodextrin, they formed supramolecular dimers, a cyclic daisy chain, supramolecular oligomers, and polymers. t-Boc-cinnamamide-α-cyclodextrin was found to form chiral supramolecular polymers in aqueous solutions. Supramolecular poly[2]rotaxane polymers and supramolecular α,β-cyclodextrin copolymers were obtained. Polyrotaxanes containing β-cyclodextrin or γ-cyclodextrin were prepared. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5113–5119, 2006  相似文献   

20.
A bis‐branched [3]rotaxane, with two [2]rotaxane arms separated by an oligo(para‐phenylenevinylene) (OPV) fluorophore, was designed and investigated. Each [2]rotaxane arm employed a difluoroboradiaza‐s‐indacene (BODIPY) dye‐functionalized dibenzo[24]crown‐8 macrocycle interlocked onto a dibenzylammonium in the rod part. The chemical structure of the [3]rotaxane was confirmed and characterized by 1H and 13C NMR spectroscopy and high‐resolution ESI mass spectrometry. The photophysical properties of [3]rotaxane and its reference systems were investigated through UV/Vis absorption, fluorescence, and time‐resolved fluorescence spectroscopy. An efficient energy‐transfer process in [3]rotaxane occurred from the OPV donor to the BODIPY acceptor because of the large overlap between the absorption spectrum of the BODIPY moiety and the emission spectrum of the OPV fluorophore; this shows the important potential of this system for designing functional molecular systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号