首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic electrode materials have application potential in lithium batteries owing to their high capacity, abundant resources, and structural designability. However, most reported organic cathodes are at oxidized states (namely unlithiated compounds) and thus need to couple with Li-rich anodes. In contrast, lithiated organic cathode materials could act as a Li reservoir and match with Li-free anodes such as graphite, showing great promise for practical full-battery applications. Here we summarize the synthesis, stability, and battery applications of lithiated organic cathode materials, including synthetic methods, stability against O2 and H2O in air, and strategies to improve comprehensive electrochemical performance. Future research should be focused on new redox chemistries and the construction of full batteries with lithiated organic cathodes and commercial anodes under practical conditions. This Minireview will encourage more efforts on lithiated organic cathode materials and finally promote their commercialization.  相似文献   

2.
Organic electrode materials could revolutionize batteries because of their high energy densities, the use of Earth-abundant elements, and structural diversity which allows fine-tuning of electrochemical properties. However, small organic molecules and intermediates formed during their redox cycling in lithium-ion batteries (LIBs) have high solubility in organic electrolytes, leading to rapid decay of cycling performance. We report the use of three cyclotetrabenzil octaketone macrocycles as cathode materials for LIBs. The rigid and insoluble naphthalene-based cyclotetrabenzil reversibly accepts eight electrons in a two-step process with a specific capacity of 279 mAh g−1 and a stable cycling performance with ≈65 % capacity retention after 135 cycles. DFT calculations indicate that its reduction increases both ring strain and ring rigidity, as demonstrated by computed high distortion energies, repulsive regions in NCI plots, and close [C⋅⋅⋅C] contacts between the naphthalenes. This work highlights the importance of shape-persistency and ring strain in the design of redox-active macrocycles that maintain very low solubility in various redox states.  相似文献   

3.
The solvation structure of Li+ plays a significant role in determining the physicochemical properties of electrolytes. However, to date, there is still no clear definition of the solvating power of different electrolyte solvents, and even the solvents that preferentially participate in the solvation structure remain controversial. In this study, we comprehensively discuss the solvating power and solvation process of Li+ ions using both experimental characterizations and theoretical calculations. Our findings reveal that the solvating power is dependent on the strength of the Li+-solvent (ion-dipole) interaction. Additionally, we uncover that the anions tend to enter the solvation sheath in most electrolyte systems through Li+-anion (ion-ion) interaction, which is weakened by the shielding effect of solvents. The competition between the Li+-solvent and Li+-anion interactions ultimately determines the final solvation structures. This insight into the fundamental understanding of the solvation structure of Li+ provides inspiration for the design of multifunctional mixed-solvent electrolytes for advanced batteries.  相似文献   

4.
Faradaic reactions including charge transfer are often accompanied with diffusion limitation inside the bulk. Conductive two-dimensional frameworks (2D MOFs) with a fast ion transport can combine both—charge transfer and fast diffusion inside their porous structure. To study remaining diffusion limitations caused by particle morphology, different synthesis routes of Cu-2,3,6,7,10,11-hexahydroxytriphenylene (Cu3(HHTP)2), a copper-based 2D MOF, are used to obtain flake- and rod-like MOF particles. Both morphologies are systematically characterized and evaluated for redox-active Li+ ion storage. The redox mechanism is investigated by means of X-ray absorption spectroscopy, FTIR spectroscopy and in situ XRD. Both types are compared regarding kinetic properties for Li+ ion storage via cyclic voltammetry and impedance spectroscopy. A significant influence of particle morphology for 2D MOFs on kinetic aspects of electrochemical Li+ ion storage can be observed. This study opens the path for optimization of redox active porous structures to overcome diffusion limitations of Faradaic processes.  相似文献   

5.
The prosperity of the lithium-ion battery market is dialectically accompanied by the depletion of corresponding resources and the accumulation of spent batteries. It is an urgent priority to develop green and efficient battery recycling strategies for helping ease resources and environmental pressures at the current stage. Here, we propose a mild and efficient lithium extracting strategy based on potential controllable redox couples. Active lithium in the spent battery without discharging is extracted using a series of tailored aprotic solutions comprised of polycyclic aromatic hydrocarbons and ethers. This ensures a safe yet efficient recycling process with nearly ≈100 % lithium recovery. We further investigate the Li+-electron concerted redox reactions and the effect of solvation structure on kinetics during the extraction, and broaden the applicability of the Li-PAHs solution. This work can stimulate new inspiration for designing novel solutions to meet efficient and sustainable demands in recycling batteries.  相似文献   

6.
Vacancies can significantly affect the performance of metal oxide materials. Here, a gradient graphdiyne (GDY) induced Cu/O-dual-vacancies abundant Cu0.95V2O5@GDY heterostructure material has been prepared as a competitive fast-charging anode material. Cu0.95V2O5 self-catalyzes the growth of gradient GDY with rich alkyne-alkene complex in the inner layer and rich alkyne bonds in the outer layer, leading to the formation of Cu and O vacancies in Cu0.95V2O5. The synergistic effect of vacancies and gradient GDY results in the electron redistribution at the hetero-interface to drive the generation of a built-in electric field. Thus, the Li-ion transport kinetics, electrochemical reaction reversibility and Li storage sites of Cu0.95V2O5 are greatly enhanced. The Cu0.95V2O5@GDY anodes show excellent fast-charging performance with high capacities and negligible capacity decay for 10 000 cycles and 20 000 cycles at extremely high current densities of 5 A g−1 and 10 A g−1, respectively. Over 30 % of capacity can be delivered in 35 seconds.  相似文献   

7.
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78–1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N′,N′-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4[Si(W3O10)4] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L−1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.  相似文献   

8.
The water-soluble salt-template technique holds great promise for fabricating 3D porous materials. However, an equipment-free and pore-size controllable synthetic approach employing salt-template precursors at room temperature has remained unexplored. Herein, we introduce a green room-temperature antisolvent precipitation strategy for creating salt-template self-assembly precursors to universally produce 3D porous materials with controllable pore size. Through a combination of theoretical simulations and advanced characterization techniques, we unveil the antisolvent precipitation mechanism and provide guidelines for selecting raw materials and controlling the size of precipitated salt. Following the calcination and washing steps, we achieve large-scale and universal production of 3D porous materials and the recycling of the salt templates and antisolvents. The optimized nitrogen-doped 3D porous carbon (N-3DPC) materials demonstrate distinctive structural benefits, facilitating a high capacity for potassium-ion storage along with exceptional reversibility. This is further supported by in situ electrochemical impedance spectra, in situ Raman spectroscopy, and theoretical calculations. The anode shows a high rate capacity of 181 mAh g−1 at 4 A g−1 in the full cell. This study addresses the knowledge gap concerning the room-temperature synthesis of salt-template self-assembly precursors for the large-scale production of porous materials, thereby expanding their potential applications for electrochemical energy conversion and storage.  相似文献   

9.
Developing new types of rechargeable batteries with high energy densities and low cost have received increasing attentions, aiming to reduce the dependence on high-priced lithium. Beyond Li-ion batteries, the potential alternatives including Na-ion batteries, Li-S batteries and Li-air batteries have been investigated recently, which are required to be viable for commercial applications. From this point of view, to understand the electrochemical reaction mechanisms and kinetics of these batteries has become the key challenge to make breakthroughs in the field of new energy storage. In this review, we present a critical overview of the two dimensional nanomaterials-based batteries (except Li-ion-based batteries) that could meet such demonds. To develop new energy storage devices with more promising performances, the microstructure evolution and atomic scale storage mechanism of these batteries are comprehensively summarized. In addition, the major challenges and opportunities of advanced characterization techniques are finally discussed. We do hope that this review will give the readers a clear and profound understanding of the electrochemical reaction mechanisms and kinetics of the as-discussed batteries, thus effectively contributing to the smart design of future-generation energy storage devices.  相似文献   

10.
Carbon is a simple, stable and popular element with many allotropes. The carbon family members include carbon dots, carbon nanotubes, carbon fibers, graphene, graphite, graphdiyne and hard carbon, etc. They can be divided into different dimensions, and their structures can be open and porous. Moreover, it is very interesting to dope them with other elements (metal or non‐metal) or hybridize them with other materials to form composites. The elemental and structural characteristics offer us to explore their applications in energy, environment, bioscience, medicine, electronics and others. Among them, energy storage and conversion are extremely attractive, as advances in this area may improve our life quality and environment. Some energy devices will be included herein, such as lithium‐ion batteries, lithium sulfur batteries, sodium‐ion batteries, potassium‐ion batteries, dual ion batteries, electrochemical capacitors, and others. Additionally, carbon‐based electrocatalysts are also studied in hydrogen evolution reaction and carbon dioxide reduction reaction. However, there are still many challenges in the design and preparation of electrode and electrocatalytic materials. The research related to carbon materials for energy storage and conversion is extremely active, and this has motivated us to contribute with a roadmap on ‘Carbon Materials in Energy Storage and Conversion’.  相似文献   

11.
In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.  相似文献   

12.
Localized high-concentration electrolytes (LHCEs) based on five different types of solvents were systematically studied and compared in lithium (Li)-ion batteries (LIBs). The unique solvation structure of LHCEs promotes the participation of Li salt in forming solid electrolyte interphase (SEI) on graphite (Gr) anode, which enables solvents previously considered incompatible with Gr to achieve reversible lithiation/delithiation. However, the long cyclability of LIBs is still subject to the intrinsic properties of the solvent species in LHCEs. Such issue can be readily resolved by introducing a small amount of additive into LHCEs. The synergetic decompositions of Li salt, solvating solvent and additive yield effective SEIs and cathode electrolyte interphases (CEIs) in most of the studied LHCEs. This study reveals that both the structure and the composition of solvation sheaths in LHCEs have significant effect on SEI and CEI, and consequently, the cycle life of energetically dense LIBs.  相似文献   

13.
Since their first commercialization in the 1990s,lithium-ion batteries (LIBs) have become an indispensible part of our everyday life in particular for portable electronic devices. LIBs have been considered as the most promising sustainable high energy density storage device. In recent years, there is a strong demand of LIBs for hybrid electric and electric vehicles to lower carbon footprint and mitigate climate change. However, LIBs have several issues, for example, high cost and safety issues such as over discharge, intolerance to overcharge, high temperature operation etc. To address these issues several new types of electrodes are being studied. Traditional binder PVDF is costly, difficult to recyle, undergoes side reactions at high temperature and cannot stabilize high energy density electrodes. To overcome these challenges, diiferent binders have been introduced with these electrodes. This minireview is focused on the application of guar gum as a binder for different electrodes and separator. The electrochemical performance of electrodes with guar gum has been compared with other binders.  相似文献   

14.
王宇婷 《化学通报》2020,83(6):557-563,575
三氧化钨(WO_3)凭借其在锂离子电池中较高的理论比容量(~700mAh·g~(-1))以及廉价易得的特性而引起了科研工作者广泛的研究兴趣,然而其相对较差的导电性以及在循环过程中所发生的较大体积变化导致其倍率性能和循环性能并不理想。为了增强其导电性,减缓体积变化所带来的负面影响,本文采用等离子体增强的化学气相沉积法成功地在所制备的WO_(3-x)纳米片上包覆含有氮元素掺杂的无定形碳。氮掺杂碳的包覆可以有效降低循环过程中发生的较大体积变化问题,而且可以提供更多的位点供锂离子进行嵌入/脱嵌。电化学测试表明,所制备的WO_(3-x)/C电极相比于WO_(3-x)电极和商业WO_3电极,展现出更好的倍率性能和循环性能。动力学模拟与计算表明,经过碳包覆的WO_(3-x)/C电极具有更小的电荷转移电阻和更快的锂离子扩散速率,从而有效提升其电化学性能。  相似文献   

15.
Ab initio calculations using the MP2/cc-pVTZ basis set do an excellent job of predicting the inversion barrier (247 vs. 232 cm−1) and dihedral angle (26°) of cyclopentene. DFT calculations also do an excellent job of predicting the vibrational frequencies of the d0, d1, d4, and d8 isotopomers. They have also allowed the reassignments of several of the vibrational frequencies.  相似文献   

16.
采用HF、MP2方法和密度泛函理论BP86方法,对扩展卟啉(hexaphyrins)及2个Au+与之组成的双金属配合物的的几何结构、电子结构进行了理论研究,并采用TDDFT方法对2种体系的电子光谱等进行了计算.研究表明hexaphyrins与Au+配位使得体系出现了较为显著的电子相关效应,HF方法不适合该体系的研究,MP2方法和BP86方法给出了相近的几何结构.从简单的卟吩变化到扩展卟啉,体系结构的显著变化导致前线轨道的组成和能级也随之发生复杂的变化,因此很难用简单的四轨道模型对体系所有显著的电子跃迁给予明确的解释.由于Au+与hexaphyrins的配位对体系前线轨道的组成影响不大,因此对hexaphyrins-Au+紫外-可见光谱的计算和解析得到与hexaphyrins相似的结果.  相似文献   

17.
氧化亚硅(SiO)作为锂离子电池负极材料,具有较高的理论比容量(~2043 mAh·g-1)以及合适的脱锂电位(< 0.5 V),且原料储量丰富、制备成本较低、对环境友好,被认为是下一代高能量密度锂离子电池负极极具潜力的候选材料。然而,SiO在脱/嵌锂过程中存在着较严重的体积效应(~200%),易导致材料颗粒粉化、脱落,严重影响了SiO负极电极的界面稳定性和电化学性能。近年来,人们围绕SiO负极结构优化和界面改性开展了大量工作。本文先从SiO负极材料的结构特点出发,阐述了该材料面临的主要瓶颈问题;继而从SiO的结构优化、SiO/碳复合和SiO/金属复合等三方面,系统总结了迄今已有的SiO负极结构设计和界面调控策略,并分别对其方法特点、电化学性能以及二者间关联规律进行了比较和归纳,最后对SiO负极材料结构和界面改性的未来发展方向进行了展望。  相似文献   

18.
Natural materials are good options for being used as inhibitors due to their high biodegradability, reasonable cost, easiness in use and high efficiency. In this regard, waste natural materials are very useful because they have all the properties of natural materials and easily available at very low cost (almost free). This work reports a similar kind of waste natural materials namely onion peels. The water extract of onion peels (WEOP) is characterized by UV–vis spectroscopy (UVS) and FTIR spectroscopy (FTIS). WEOP is tested for corrosion inhibition of mild steel (MS) in 1 M NaCl by various techniques like typical weight loss measurements (WLM), open circuit potential (OCP) curves, Tafel polarization (TP) curves, electrochemical impedance spectroscopy (EIS) and surface scanning microscopy (SEM). The maximum inhibition of mild steel corrosion is 90% (WLM). The reason of inhibition based on experimental analysis is proposed as adsorption of extract molecules on MS, which is found true in SEM images and Langmuir isotherm study. The WEOP is also examined by density functional theory principles, which recommends that the extract molecules can be easily adsorbed on MS and can stop corrosion of MS in NaCl solutions. Based on investigation, a schematic is introduced for compact explanation.  相似文献   

19.
锂离子电池的商业石墨负极材料的容量已经接近理论值,限制了动力电池的发展,开发容量高、稳定性好、循环寿命长和倍率性能优良的新型负极材料显得尤为重要。钴基氧化物材料由于其具有较高的比容量,是锂离子电池的理想负极材料之一。本文分别从结构设计和化学成分调控2个方面,结合本课题组近年来的研究及国内外重要文献综述了钴基氧化物作为锂离子电池负极材料的研究进展。在结构设计方面,通过构建一维结构、二维结构、三维结构、空心结构、碳材料支撑结构以及异质结构来增加钴基氧化物的反应活性位点数量;而在化学成分调控方面则通过引入无定型结构、非金属杂原子掺杂、金属杂原子掺杂、构筑高熵氧化物来提高钴基氧化物的本征活性,从而提高钴基氧化物的锂离子电池性能。最后,对钴基氧化物在锂离子电池领域未来的发展进行了展望。  相似文献   

20.
Density functional theory and molecular dynamics (MD) calculations were used to evaluate electronic structure properties in a series of nanotubes with smallest possible diameters (both types: armchair and zigzag), and the corresponding chiral nanotubes (8,m) for 0 ≤ m ≤ 8. The calculations were performed considering a length of 16.5 Å. We evaluated a set of 26 combinations of dual nanotubes (armchair/armchair, zigzag/zigzag, armchair/zigzag, and zigzag/armchair), where the first label corresponds to the outer tube. We extended our study with nine additional systems of double-walled carbon nanotubes (DWCNT) with semiconductor nature. In this regard, we gave insight into the semiconductive or metallic nature inherited to the dual tubes. DWCNT systems were possible to construct by maintaining a radial distance of 3.392 Å for the armchair/armchair arrangement and 3.526 Å for the zigzag/zigzag type. It was considered as a reference, the interplanar distance of graphite (3.350 Å). Electronic transport calculations were also performed on selected DWCNT systems in order to understand the role played by the different symmetries under study. It was evidenced that the electronic structure nature of the systems rules the ability to transport electrons through the DWCNT interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号