首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel nanographenes were prepared by a photochemical cyclodehydrochlorination (CDHC) reaction. Chlorinated precursors were irradiated in acetone in the presence of a base or in pure benzene and underwent multiple (up to four) regioselective cyclization reactions to provide rigid π‐conjugated molecules. Pure compounds were recovered in good yields by simple filtration at the end of the reaction. The CDHC reaction showed compatibility with both electron‐poor and electron‐rich substrates, thus allowing the synthesis of pyridine‐ and thiophene‐fused nanographenes. It also enabled the synthesis of sterically hindered contorted π‐conjugated molecules without causing full aromatization. A kinetic study showed that the CDHC reaction under the conditions used is a very fast process, and some reactions are completed within minutes. The CDHC reaction thus shows great potential as an alternative to other reactions involving harsher conditions for the preparation of nanographenes.  相似文献   

2.
The quantum‐size effect, which enables nanographenes to emit photoluminescence (PL) in the UV to visible region, has inspired intense research. However, the control of the PL properties of nanographenes through manipulation of their π‐system by post‐modifications is not well developed. By utilizing a ring‐closure reaction between an aromatic 1,2‐dicarboxylic acid and a 1,8‐naphthalenediamine derivative, which produces a perimidine framework, nitrogen‐doped nanographenes were realized. Two nanographenes produced by a one‐pot reaction of edge‐oxidized nanographene (GQD‐ 2 ) with 1,8‐naphthalenediamine derivatives (GQD‐ 1 a and GQD‐ 1 b ) displayed an absorption band extending to >1000 nm; furthermore, the PL wavelength of GQD‐ 1 a was significantly red‐shifted into the near‐infrared (NIR) region in which it can be used for bioimaging. Time‐dependent DFT calculations of model nanographenes showed that the functional groups narrow the HOMO–LUMO gap, realizing the NIR‐emitting nanographenes.  相似文献   

3.
Rearrangements in Scholl reaction are mostly serendipitous. The design of molecular precursors is what seems to guide the course of rearrangement. This review consolidates different classes of precursors used in Scholl reaction and their accompanying rearrangements that include aryl migration, migration followed by cyclization and skeletal rearrangements involving ring expansion, ring contraction and both, under the reaction conditions. The attempt in collating heretofore-reported examples in this review is to guide designing appropriate precursors to predictably achieve complex molecular structures or nanographenes or defect-nanographenes via rearrangement.  相似文献   

4.
Efficient and rapid access to nanographenes and π‐extended fused heteroaromatics is important in materials science. Herein, we report a palladium‐catalyzed efficient one‐step annulative π‐extension (APEX) reaction of polycyclic aromatic hydrocarbons (PAHs) and heteroaromatics, producing various π‐extended aromatics. In the presence of a cationic Pd complex, triflic acid, silver pivalate, and diiodobiaryls, diverse unfunctionalized PAHs and heteroaromatics were directly transformed into larger PAHs, nanographenes, and π‐extended fused heteroaromatics in a single step. In the reactions that afford [5]helicene substructures, simultaneous dehydrogenative ring closures occur at the fjord regions to form unprecedented larger nanographenes. This successive APEX reaction is notable as it stiches five aryl–aryl bonds by C−H functionalization in a single operation. Moreover, the unique molecular structures, crystal‐packing structures, photophysical properties, and frontier molecular orbitals of the thus‐formed nanographenes were elucidated.  相似文献   

5.
The efficient synthesis and electronic properties of two large-size cove-edged nanographenes (NGs), CN1 and CN2 , are presented. X-ray crystallographic analysis reveals a contorted backbone for both molecules owing to the steric repulsion at the inner cove position. Noticeably, the dominant structures of these molecules contain four (for CN1 ) or six (for CN2 ) localized C=C double bonds embedded in nine (for CN1 ) or twelve (for CN2 ) aromatic sextet rings according to Clar's formula, which is supported by bond length analysis and theoretical (NICS, ACID) calculations. Furthermore, Raman spectra exhibit a band associated with the longitudinal CC stretching mode of olefinic double bonds. Owing to the existence of the additional olefinic bonds, both compounds show a small band gap (1.84 eV for CN1 and 1.37 eV for CN2 ). They also display moderate fluorescence quantum yield (35 % for CN1 and 50 % for CN2 ) owing to the contorted geometry, which can suppress aggregation in solution.  相似文献   

6.
The atomically precise edge chlorination of nanographenes has recently been reported as a crucial technology of functionalization through which the planar structure and optical properties of nanographenes can be significantly changed. To check the effects of molecular size, geometrical symmetry and edge functionalization of nanographenes on their optical properties, a series of nanographenes is studied in the framework of density functional theory with the B3LYP functional. Our results indicate that edge functionalization remarkably changes the nonlinear optical properties and increases the anisotropy of nanographenes compared to the effects of the molecular size and system geometric symmetry. Furthermore, the nonlinear optical properties of nanographenes can be tuned by precise edge functionalization, which opens a new avenue for using nanographenes as nonlinear optical materials.  相似文献   

7.
The Raman and IR spectra of 2,2′-diphenyl ethyl alcohol and 2,2′-diphenyl ethylamine have been analyzed assuming the phenyl rings vibrate independently. Complete vibrational assignment show that some ring modes for both the molecules are found to appear in pairs. Possible orientation of the two rings with respect to the tetragonally hybridized carbon atom has been discussed. Two probable cases of Fermi resonance have been observed. The general nature of the ring modes to exhibit a pair of frequencies in some diphenyl-type molecules has been described.  相似文献   

8.
Chiral nanographenes with both high fluorescence quantum yields (ΦF) and large dissymmetry factors (glum) are essential to the development of circularly polarized luminescence (CPL) materials. However, most studies have been focused on the improvement of glum, whereas how to design highly emissive chiral nanographenes is still unclear. In this work, we propose a new design strategy to achieve chiral nanographenes with high ΦF by helical π-extension of strongly luminescent chromophores while maintaining the frontier molecular orbital (FMO) distribution pattern. Chiral nanographene with perylene as the core and two dibenzo[6]helicene fragments as the wings has been synthesized, which exhibits a record high ΦF of 93 % among the reported chiral nanographenes and excellent CPL brightness (BCPL) of 32 M−1 cm−1.  相似文献   

9.
By the counterpoise-correlated potential energy surface method (interaction energy optimization), the structure of the pi H-bond complex FH cdots, three dots, centered FH . . . C4H4 . . . HF has been obtained at the second-order M?ller-Plesset perturbation theory (MP2/aug-cc-pVDZ) level. Intermolecular interaction energy of the complex is calculated to be -7.8 kcal/mol at the coupled-cluster theory with single, double substitutions and perturbatively linked triple excitations CCSD (T)/aug-cc-pVDZ level. The optimized structure is a "wheel with a pair of pedals" shaped (1mid R:1) structure in which both HF molecules almost lie on either vertical line passing through the middle-point of the C[Double Bond]C bond on either side of the horizontal plane of the C4 ring for cyclobutadiene. In the structure, an antiaromatic ring pi-dihydrogen bond is found, in which the proton acceptor is antiaromatic 4 electron and 4 center pi bond and the donors are both acidic H atoms of HF molecules. In accompanying with the pi-dihydrogen bond, two secondary interactions are exposed. The first is a repulsive interaction between an H atom of HF and a near pair of H atoms of C4H4 ring. The second is the double pi-type H bond between two lone pairs on a F atom and a far pair of H atoms.  相似文献   

10.
The Clar Goblet, the first radical bowtie nanographene proposed by Erich Clar nearly 50 years ago, was recently synthesized. Bowtie nanographenes present quasi-degenerate magnetic ground states, which make them so elusive as unique. A thorough analysis is presented of the spin-state energetics of Clar Goblet and bowtie nanographenes by a battery of existing and novel ab initio procedures ranging from density functional theory to complete active space Hamiltonians. With this, it was proven that π radicals of bowtie nanographenes sit on BP (Benzo[cd]Pyrene) moieties driven by their local aromaticity, a purely chemical concept, which confers global stability to the whole structure. Besides, a novel Pauli energy densities analysis provided a visual intuitive explanation for this preference. These findings allow envisioning that analogous bowtie nanographenes with arbitrary polyradical character are not only feasible at the molecular scale but will share Clar Goblet's peculiar properties.  相似文献   

11.
Top‐down approaches have been widely used as convenient methods for the production of nanographenes. To understand the photoemission properties of nanographenes, their separation and the optical properties of the individual fractions is important. By using a combination of size‐exclusion and silica‐gel‐adsorption chromatography, we separated lipophilic nanographenes that contained para‐methoxybenzyl groups. The mixture consisted of large (average 19.8 nm) and small (average 4.9 nm) nanographenes, whilst unreacted carboxy groups remained in the latter group. Optical measurements revealed that oxygen‐containing functional groups had little influence on the photoemission of the nanographenes, thus indicating that the intrinsic emission, that is, emission from the sp2 surfaces, was responsible for the photoemission. Two photoemission bands were observed for all of the fractions, which likely originated from the edge and inner parts of nanographene.  相似文献   

12.
The efficient synthesis and electronic properties of two large‐size cove‐edged nanographenes (NGs), CN1 and CN2 , are presented. X‐ray crystallographic analysis reveals a contorted backbone for both molecules owing to the steric repulsion at the inner cove position. Noticeably, the dominant structures of these molecules contain four (for CN1 ) or six (for CN2 ) localized C=C double bonds embedded in nine (for CN1 ) or twelve (for CN2 ) aromatic sextet rings according to Clar's formula, which is supported by bond length analysis and theoretical (NICS, ACID) calculations. Furthermore, Raman spectra exhibit a band associated with the longitudinal CC stretching mode of olefinic double bonds. Owing to the existence of the additional olefinic bonds, both compounds show a small band gap (1.84 eV for CN1 and 1.37 eV for CN2 ). They also display moderate fluorescence quantum yield (35 % for CN1 and 50 % for CN2 ) owing to the contorted geometry, which can suppress aggregation in solution.  相似文献   

13.
Photochemical reactors inherently suffer from the low penetration depth of light and therefore rely on high dilutions to enable chemical reactions. Here we present the first method of UV (ultraviolet) photochemistry in the complete absence of bulk solvents in a ball mill. Triphenylene was synthesized by two routes, the Mallory reaction and the cyclodehydrochlorination (CDHC), resulting in yields of 81 and 92 %, respectively. The reaction was successfully scaled up to the gram scale and the robustness of the method was demonstrated for several different substrates. Finally, the regioselective assembly of nanographenes by mechanochemistry was demonstrated for larger systems. Thus, the mechanochemical approach presented here provides a powerful new tool for the atomically precise construction of nanographenes.  相似文献   

14.
Low‐lying excited states of planarly extended nanographenes are investigated using the long‐range corrected (LC) density functional theory (DFT) and the spin‐flip (SF) time‐dependent density functional theory (TDDFT) by exploring the long‐range exchange and double‐excitation correlation effects on the excitation energies, band gaps, and exciton binding energies. Optimizing the geometries of the nanographenes indicates that the long‐range exchange interaction significantly improves the C C bond lengths and amplify their bond length alternations with overall shortening the bond lengths. The calculated TDDFT excitation energies show that long‐range exchange interaction is crucial to provide accurate excitation energies of small nanographenes and dominate the exciton binding energies in the excited states of nanographenes. It is, however, also found that the present long‐range correction may cause the overestimation of the excitation energy for the infinitely wide graphene due to the discrepancy between the calculated band gaps and vertical ionization potential (IP) minus electron affinity (EA) values. Contrasting to the long‐range exchange effects, the SF‐TDDFT calculations show that the double‐excitation correlation effects are negligible in the low‐lying excitations of nanographenes, although this effect is large in the lowest excitation of benzene molecule. It is, therefore, concluded that long‐range exchange interactions should be incorporated in TDDFT calculations to quantitatively investigate the excited states of graphenes, although TDDFT using a present LC functional may provide a considerable excitation energy for the infinitely wide graphene mainly due to the discrepancy between the calculated band gaps and IP–EA values. © 2017 Wiley Periodicals, Inc.  相似文献   

15.
By reaction of Cu(2)CO(3)(OH)(2), 2-benzylmalonic acid (H(2)Bzmal), and 1,10-phenanthroline (phen), [Cu(Bzmal)(phen)(H(2)O)] x 3H(2)O (compound 1) has been obtained and characterized by thermal, spectral, magnetic, and X-ray diffraction methods. The molecular structure of 1 is remarkably similar to that of [Cu(Bzmal)(bipy)(H(2)O)] x 2H(2)O (compound 2, bipy = 2,2'-bipyridine). In both complexes, the aryl(Bzmal) ring produces an unexpected pi,pi-stacking interaction with the Cu(II)-(aromatic alpha,alpha'-diimine) chelate ring, at an average distance d(pi)(-)(pi) of 3.40 A, involving roughly parallel and smoothly slipped rings. This insight is discussed as new structural evidence for metalloaromaticity of Cu(II)-(aromatic alpha,alpha'-diimine) chelate rings. Interestingly, 1 recognizes itself by a weak intermolecular pi,pi-stacking interaction between aryl(Bzmal) ligands to give pairs of complex molecules. In contrast, there is an intermolecular pyridyl-pyridyl pi,pi-stacking interaction also forming pairs of complex molecules in 2.  相似文献   

16.
Herein, we report the design and synthesis of a series of novel cationic nitrogen‐doped nanographenes (CNDNs) with nonplanar geometry and axial chirality. Single‐crystal X‐ray analysis reveals helical and cove‐edged structures. Compared to their all‐carbon analogues, the frontier orbitals of the CNDNs are energetically lower lying, with a reduced optical energy gap and greater electron‐accepting behavior. Cyclic voltammetry shows all the derivatives to undergo quasireversible reductions. In situ spectroelectrochemical studies prove that, depending on the number of nitrogen dopants, either neutral radicals (one nitrogen dopant) or radical cations (two nitrogen dopants) are formed upon reduction. The concept of cationic nitrogen doping and introducing helicity into nanographenes paves the way for the design and synthesis of expanded nanographenes or even graphene nanoribbons with cationic nitrogen dopants.  相似文献   

17.
Magnetism in nanographenes [also known as polycyclic aromatic hydrocarbons (PAHs)] is studied with first principles density functional calculations. We find that an antiferromagnetic (AFM) phase appears as the PAH reaches a certain size. This AFM phase in PAHs has the same origin as the one in infinitely long zigzag-edged graphene nanoribbons, namely, from the localized electronic state at the zigzag edge. The smallest PAH still having an AFM ground state is identified. With increased length of the zigzag edge, PAHs approach an infinitely long ribbon in terms of (1) the energetic ordering and difference among the AFM, ferromagnetic, and nonmagnetic phases and (2) the average local magnetic moment at the zigzag edges. These PAHs serve as ideal targets for chemical synthesis of nanographenes that possess magnetic properties. Moreover, our calculations support the interpretation that experimentally observed magnetism in activated carbon fibers originates from the zigzag edges of the nanographenes.  相似文献   

18.
This Focus Review describes the recent progress, from both theoretical and experimental perspectives, on four types of benzenoid polycyclic hydrocarbons with an open–shell biradical ground state: 1) acenes, 2) periacenes and anthenes, 3) zethrenes, and 4) extended p‐quinodimethane derivatives. These interesting molecules have provided excellent platforms to investigate the electronic structures of nanographenes and represent promising candidates for the next generation of molecule‐based materials in the field of electronics, spintronics, and non‐linear optics. The focus of this article will be put on the structural significance, the physical properties relevant to the open–shell electronic configurations, and potential applications.  相似文献   

19.
A new family of distorted ribbon‐shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two‐photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven‐membered‐ring‐containing nanographene presenting a tropone moiety at the edge, its full‐carbon analogue, and a purely hexagonal one. We have found that the TPA cross‐sections and the electrochemical band gaps of the seven‐membered‐ring‐containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non‐linear optical properties of those ribbons.  相似文献   

20.
Three unprecedented helical nanographenes ( 1 , 2 , and 3 ) containing an azulene unit are synthesized. The resultant helical structures are unambiguously confirmed by X-ray crystallographic analysis. The embedded azulene unit in 2 possesses a record-high twisting degree (16.1°) as a result of the contiguous steric repulsion at the helical inner rim. Structural analysis in combination with theoretical calculations reveals that these helical nanographenes manifest a global aromatic structure, while the inner azulene unit exhibits weak antiaromatic character. Furthermore, UV/Vis-spectral measurements reveal that superhelicenes 2 and 3 possess narrow energy gaps ( 2 : 1.88 eV; 3 : 2.03 eV), as corroborated by cyclic voltammetry and supported by density functional theory (DFT) calculations. The stable oxidized and reduced states of 2 and 3 are characterized by in-situ EPR/Vis–NIR spectroelectrochemistry. Our study provides a novel synthetic strategy for helical nanographenes containing azulene units as well as their associated structures and physical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号